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Paley and Wiener proved that every entire function of exponential 
type r which belongs to L2 in the real axis can be represented as the 
Fourier transform of a function which belongs to L2( — ry r) and con­
versely (see Boas [l, p. 103]). The Lp-analogue of the Paley-Wiener 
theorem for Kp<2 was proved by Boas [2] and by Plancherel and 
Pólya [9]. Boas also showed that the theorem does not hold for other 
values of p unless some restrictions are imposed. The extensions to 
functions of order 1/rn, where m is an integer ^ 1 , and type <r are 
given by Ibragimov [7]. Since the Hankel transforms are natural 
generalizations of the Fourier transforms, it is natural to ask whether 
such a representation for entire functions is possible in this case also. 
The aim of this note is to obtain an analogue of the Paley-Wiener 
theorem for Hankel transforms for the case Kp<2 and to extend 
the results of Ibragimov. These results with proofs will appear else­
where and we shall only summarize them here. 

Unless otherwise stated, v is always assumed to be greater than or 
equal to —1/2. If p>l, then q will denote its conjugate index given 
by ^ - 1 + 2 ~ 1 = = 1 . Let z = x+iy denote the complex variable. Jv(z) de­
notes the Bessel function of the first kind of order v. 

The Hankel transform of a function / ( # ) £ L P ( 0 , «>), p>l, is de­
fined by the formula 

/» » 
F(u) = I (xuyiVv(xu)f(x) dx, 

J o 

where the integral is taken in the L3-sense or in the mean, that is, 
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\F(u) - I (xuyiUy(xu)f(x) dx 
o I ^ o 

du ~ 0. 

The existence of ^(w) for 1 < £ ^S2 is contained in a theorem of Titch-
marsh [ i l ] . 

The L2-analogue of the Paley-Wiener theorem for Hankel trans­
forms was proved by Griffith [5, pp. 109-115]. 

Our principal result is 

THEOREM I. Letf(z) be an even entire function of exponential type 1. 
If K p S 2 and xv+112f{x) £ Lp ( — oo, oo ), then f(z) can be represented by 

(1) f(z) = 2T* f t-vJv(zt)<t>(f) dt, 

where t~p~1,2<j>(t)CELq(0, 1). If f(z) has the representation (1) and 
t~'-~ll2<t>(t)ÇiLv(f), 1), Kp-^lithen f (z) is an even entire function of ex­
ponential type 1 swcft that xv+ll2f(x)<ELq(— oo, oo). 

We shall point out that the example given by Boas [2] for the 
Fourier case can be suitably modified to show that, if p>2, there 
exists an even entire function f{z) of exponential type 1 such that 
x'+ll2f(x)EL*>(- oo, oo) but not of the form (1) with r""1 / 20(O 
GL«(0, 1). 

The proof of the second part of Theorem I is fairly easy while that 
of the first part depends on Theorem II which is also of independent 
interest. 

THEOREM II. A necessary and sufficient condition that f{z) has the 
form (1) with r"- 1 / 2<K0G£ p(0, 1), £ > l , is that the following hold: 

(a) ƒ(z) is an even entire function of exponential type 1, 

(b) f(jn) = j r f t-»J,(jj)<t>(t) dt, 
Jo 

(c) Xn+1/2f(xn)—>0 as n—> oo, where xn are points on the real axis such 
that 

lim inf \xn — j n \ > 0 

and 

| Xn ~ jn | < T/2, 

where j n is the nth positive zero of Jv(z). 

Theorem II is established by techniques analogous to those of Boas 
[2]-
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From Theorem I we obtain, by appropriate changes of variable, 
representations for functions of order \/m and type a such that either 

/

• » /» 00 

I xaf(x) |pAr ( w-1 ) / m dx or | xaf(x) |*3<*-1)<,w-1>'m£te 
0 J 0 

is finite, where a ^ O and m is an integer ^ 1. These include as particu­
lar cases (for v = ± §) all the results given by Ibragimov [7, pp. 6 3 -
73]. 

As applications we get various inequalities, e.g., for Omf(z), where 
0 = (z~2v~lD) (z2v+1D) and D = d/dz, and more general operators, and 
for Iƒ'(*) J and |ƒ(*) | in terms of Jl. | xv+l>2f{x) \ » dx. 
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