RESEARCH PROBLEMS

4. R. A. Hirschfeld: Invariant subspaces.

E is a complex locally convex vector space, in which every closed bounded subset is complete. Let $T: E \rightarrow E$ be a linear continuous operator with nonempty spectrum, possessing a continuous inverse $T^{-1}: E \rightarrow E$.

Assume the family $(T^n)_{n=-\infty}^{\infty}$ to be equicontinuous.

Is it true that there is an invariant closed nontrivial linear subspace for T? (For a Banach space the answer is yes.) (Received December 4, 1964.)

5. R. A. Hirschfeld: Extension of nonlinear contractions.

E and F are Banach spaces, F reflexive, D is a subset of E and $T: D \rightarrow F$ a nonlinear contraction, i.e., $||Tx_1 - Tx_2||_F \le ||x_1 - x_2||_F$ whenever $x_1, x_2 \in D$.

Can T be extended to a contraction $\tilde{T}: E \rightarrow F$? (For E = F = Hilbert space the answer is yes.) (Received December 4, 1964.)

6. Richard Bellman: Factorization of linear differential operators modulo p.

Let D represent the operator d/dx. Consider the factorization

$$D^2 + a_1(x)D + a_2(x) = (D + b_1(x))(D + b_2(x)),$$

where a_1 , a_2 , b_1 , and b_2 are polynomials in x of degree less than p, a prime, and the equality is required to hold modulo p. What is the number of irreducible linear differential operators for the case where $a_1(x)$ and $a_2(x)$ are required, respectively, to have degrees m_1 and m_2 ? Generalize to the case of linear differential operators of the form $D^n + a_1(x)D^{n-1} + \cdots + a_n(x)$. (Received November 30, 1964.)

7. Richard Bellman: Functional differential equations.

Under what condition on the function $r(t) \ge 0$ can one assert that all solutions of u'(t) + au(t-r(t)) = 0 approach zero as $t \to \infty$?

Under what conditions do all solutions of $u'(t) = au(t-r(t)) = \sin bt$ approach $c \sin bt$ as $t \to \infty$?

If all solutions of u'(t)+au(t-r)=0 approach zero as $t\to\infty$, and if $|r(t)-r|\leq\epsilon$ for $t\geq0$, do all solutions of $u'(t)+au(t-r(t))\to0$, as $t\to\infty$, for ϵ sufficiently small? (Received November 30, 1964.)

8. Richard Bellman: Lagrange expansion for operators.

It has been recognized in recent years [cf. Good, Generalizations to several variables of Lagrange's expansion, with applications to stochastic processes, Proc. Cambridge Philos. Soc. 56 (1960), 367-380] that the multidimensional Lagrange expansion is a very useful tool in many parts of analysis and mathematical physics.

Regarding the nonlinear integral equation,

(1)
$$u(x) = f(x) + t \int_0^1 k(x, y) \phi(u(y)) dy,$$

as a limiting form of the simultaneous system of equations,

(2)
$$u(x_i) = f(x_i) + t \sum_{j=1}^{N} w_j k(x_i, x_j) \phi(u(x_j)),$$

obtained by numerical quadrature, we can obtain an expansion of the form

(3)
$$\psi(u) = \psi(f) + t\psi_1 + \cdots + t^n\psi_n + \cdots,$$

which is analogous to the Lagrange expansion. Can one obtain this expansion in a simpler fashion?

Generally, considering a nonlinear equation

$$(4) u = f + tN(u),$$

where N is a nonlinear operation, can one obtain a generalized Lagrange expansion in terms of functional derivatives? (Received December 4, 1964.)

9. Richard Bellman: Functional equations and dynamic programming.

Let $q_1(x)$ and $q_2(x)$ be quadratic polynomials which approach $+\infty$ and $x \to +\infty$. An important role in dynamic programming is played by the easily established fact that

$$\min_{y} [q_1(x-y) + q_2(y)] = q_3(x),$$

where $q_{\delta}(x)$ is again a quadratic polynomial in x. Are these the only functions which display this invariance under the foregoing composition rule? Specifically,

(a) Let q(x, a) be a function of a scalar x and an N-dimensional vector a. To what extent are q and ϕ determined by the relation

$$\min_{x}[q(x-y,a)+q(y,b)]=q(x,\phi(a,b)),$$

where ϕ is an N-dimensional function of a and b?

(b) What functions allow the composition

$$\min_{y} [q(h_1(x, y), a) + q(h_2(x, y), b)] = q(x, \phi(a, b)),$$

under the further condition that the minimizing value is uniquely determined?

(c) What are the appropriate multidimensional versions of these problems—and solutions?

For a background discussion and some results, one can refer to Chapter X of R. Bellman and S. Dreyfus, *Applied dynamic programming*, Princeton Univ. Press, Princeton, N. J., 1962. (Received December 7, 1964.)