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The main result in this note, Theorem 2, can be thought of as a 
very strong maximum modulus type theorem. For example, let D 
be a bounded connected open set in C(0, 1), and l e t / : C\D—>Rn be 
continuous and differentiate in D. Then ƒ is determined by its values 
on the boundary of D. More exactly, ƒ(CLD)CCl/(d£>). More gen­
erally, if F is any Banach space and ƒ : CID-+F is completely con­
tinuous and differentiable in D, then ƒ(CLD) C CI/(dD). Note that 
these results are false if C(0, 1) is replaced by a Hubert space. 

THEOREM 1. Let D be a connected bounded open set in lp where p is 
not an even integer. Assume f is a real-valued function, continuous on 
C\D and n-times differentiable in D with n^p. Then f(CW) <ZClf(dD). 

This generalizes a result proved in 1954 by Kurzweil [ l ] . Kurzweil 
assumed that ƒ was w-times continuously differentiable, that D was 
a ball B(x0, r), and showed that inf {\f(x) — f(x0)\ : \\x — x0\\ =r} = 0. 

COROLLARY 1. Let f be an n-times differentiable function on lp, where 
n^p, and p is not an even integer. If f has its support in a bounded set, 
then ƒ is identically zero. 

In particular, it follows that, for n^p, Cn partitions of unity do 
not exist whenever p is not an even integer. This partially settles a 
question raised in Lang [2]. I t should be noted, however, that 
this is implied by Kurzweil's result. 

COROLLARY 2. Let E be a Banach space containing a subspace 
equivalent to I1. Assume D is a connected bounded open set in Ef and 
that ƒ is a real-valued function continuous on Q\D and differentiable 
inD. Thenf(CW)CC]f(dD). 

C(0, 1) and L1^, 1) are examples of spaces where Corollary 2 holds. 
More generally, any separable Banach space with an unconditional 
basis and nonseparable dual contains a subspace equivalent to ll. I t 
may be that any separable Banach space with a nonseparable dual 
has a subspace equivalent to I1. Corollary 2 generalizes an unpub­
lished result of Edward Nelson who showed that, in C(0, 1), dif­
ferentiable functions with bounded support are identically zero. 
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THEOREM 2. Let E be a Banach space containing a sub space equivalent 
to I1, let F be any Banach space, and let D be a bounded open connected 
set in E. Assume f v CW—>F is continuous, and that f (x) exists and is 
a completely continuous mapping for all xÇ£D. Then f(C\D) <ZClf(dD). 

COROLLARY 1. Let E and F be as in the theorem and let T: E-+F be 
completely continuous and differentiable. Then T{C\D)CC\T{dD) for 
any bounded connected open set D(ZE. 

This follows from the fact that if T: E—+F is completely continuous 
and T'(x) exists, then T'{x) is a completely continuous linear map­
ping. 

Letting F be the reals gives the following "sup principle". 

COROLLARY 2. Let E and D be as in the theorem, and let f be a real-
valued function continuous on C1Z> and differentiable in D. Then 
supciD f(x) = supdD fix). 

Note that f{x) = 1 — ||x||2 shows that E cannot be replaced by a 
Hilbert space. 

COROLLARY 3. Let M be a differentiable manifold modelled on E 
where E contains a sub space equivalent to I1, and let N be any dif­
ferentiable manifold. Suppose f : M—+N is differentiable and, for each x, 
f'(x) : Tx(M)-*Tf{X)(N) is a completely continuous mapping. Let (U, g) 
be a chart where gU(ZE is bounded, open, and connected. Then /(CI£7) 
CClf(dU). 

I t is well known that if p is an even integer, the norm on lp is 
C00, and if p is not even the norm is C9, where q is the greatest integer 
strictly less than p. The argument in Lang [2] then shows that 
C00- and C3-approximation holds in these respective spaces. I t follows 
from Theorem 1 that for p not even, (q + 1)-differentiable approxima­
tion does not hold. Restrepo [3 ] showed that a Banach space has an 
equivalent C^-norm if and only if its dual space is separable. I t fol­
lows that ^-approximation then holds for such spaces. I t follows 
from Theorem 2 that if E is a Banach space containing a subspace 
equivalent to I1, then not even differentiable approximation holds. 
In the following we show that C°°-approximation holds for c0. 
Restrepo's result shows that c0 has an equivalent C^-norm, and it is 
natural to ask if c0 has an equivalent C°°-norm. However, we do not 
even know if c0 has an equivalent C2-norm. This result has also been 
observed by Edward Nelson. 
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REMARK. C^-approximation holds in c0. 
Simply let g: R—>R be a C°° function satisfying g(t) = l for 

|*| ^ 1 / 2 , g(t)=0 for | ; | è l , and 0<g(t)£l for ( l / 2 ) < | / | < l . Let 
x=(xi, x2, - • • )Gco and define f(x) = YLi>-ig(xù- Then ƒ is a C°° 
function nonzero in the open unit ball, and zero off it. The argument 
is then completed as in Lang [2]. 

Complete details, extensions, and applications of the results in this 
note will be published elsewhere. 
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