DIFFERENTIABLE FUNCTIONS ON CERTAIN BANACH SPACES

BY ROBERT BONIC¹ AND JOHN FRAMPTON Communicated by G. A. Hunt, October 21, 1964

The main result in this note, Theorem 2, can be thought of as a very strong maximum modulus type theorem. For example, let D be a bounded connected open set in C(0, 1), and let $f: ClD \to R^n$ be continuous and differentiable in D. Then f is determined by its values on the boundary of D. More exactly, $f(ClD) \subset Clf(\partial D)$. More generally, if F is any Banach space and $f: ClD \to F$ is completely continuous and differentiable in D, then $f(ClD) \subset Clf(\partial D)$. Note that these results are false if C(0, 1) is replaced by a Hilbert space.

THEOREM 1. Let D be a connected bounded open set in l^p where p is not an even integer. Assume f is a real-valued function, continuous on ClD and n-times differentiable in D with $n \ge p$. Then $f(ClD) \subset Clf(\partial D)$.

This generalizes a result proved in 1954 by Kurzweil [1]. Kurzweil assumed that f was n-times continuously differentiable, that D was a ball $B(x_0, r)$, and showed that $\inf\{|f(x)-f(x_0)|: ||x-x_0||=r\}=0$.

COROLLARY 1. Let f be an n-times differentiable function on l^p , where $n \ge p$, and p is not an even integer. If f has its support in a bounded set, then f is identically zero.

In particular, it follows that, for $n \ge p$, C^n partitions of unity do not exist whenever p is not an even integer. This partially settles a question raised in Lang [2]. It should be noted, however, that this is implied by Kurzweil's result.

COROLLARY 2. Let E be a Banach space containing a subspace equivalent to l^1 . Assume D is a connected bounded open set in E, and that f is a real-valued function continuous on ClD and differentiable in D. Then $f(ClD) \subset Clf(\partial D)$.

C(0,1) and $L^1(0,1)$ are examples of spaces where Corollary 2 holds. More generally, any separable Banach space with an unconditional basis and nonseparable dual contains a subspace equivalent to l^1 . It may be that any separable Banach space with a nonseparable dual has a subspace equivalent to l^1 . Corollary 2 generalizes an unpublished result of Edward Nelson who showed that, in C(0, 1), differentiable functions with bounded support are identically zero.

¹ Research supported in part by NSF grant GP-1645.

THEOREM 2. Let E be a Banach space containing a subspace equivalent to l^1 , let F be any Banach space, and let D be a bounded open connected set in E. Assume $f: ClD \rightarrow F$ is continuous, and that f'(x) exists and is a completely continuous mapping for all $x \in D$. Then $f(ClD) \subset Clf(\partial D)$.

COROLLARY 1. Let E and F be as in the theorem and let $T: E \rightarrow F$ be completely continuous and differentiable. Then $T(ClD) \subset ClT(\partial D)$ for any bounded connected open set $D \subset E$.

This follows from the fact that if $T: E \rightarrow F$ is completely continuous and T'(x) exists, then T'(x) is a completely continuous linear mapping.

Letting F be the reals gives the following "sup principle".

COROLLARY 2. Let E and D be as in the theorem, and let f be a real-valued function continuous on ClD and differentiable in D. Then $\sup_{ClD} f(x) = \sup_{\partial D} f(x)$.

Note that $f(x) = 1 - ||x||^2$ shows that E cannot be replaced by a Hilbert space.

COROLLARY 3. Let M be a differentiable manifold modelled on E where E contains a subspace equivalent to l^1 , and let N be any differentiable manifold. Suppose $f: M \rightarrow N$ is differentiable and, for each x, $f'(x): T_x(M) \rightarrow T_{f(x)}(N)$ is a completely continuous mapping. Let (U, g) be a chart where $gU \subset E$ is bounded, open, and connected. Then $f(ClU) \subset Clf(\partial U)$.

It is well known that if p is an even integer, the norm on l^p is C^{∞} , and if p is not even the norm is C^q , where q is the greatest integer strictly less than p. The argument in Lang [2] then shows that C^{∞} - and C^q -approximation holds in these respective spaces. It follows from Theorem 1 that for p not even, (q+1)-differentiable approximation does not hold. Restrepo [3] showed that a Banach space has an equivalent C^1 -norm if and only if its dual space is separable. It follows that C^1 -approximation then holds for such spaces. It follows from Theorem 2 that if E is a Banach space containing a subspace equivalent to l^1 , then not even differentiable approximation holds. In the following we show that C^{∞} -approximation holds for c_0 . Restrepo's result shows that c_0 has an equivalent C^1 -norm, and it is natural to ask if c_0 has an equivalent C^{∞} -norm. However, we do not even know if c_0 has an equivalent C^2 -norm. This result has also been observed by Edward Nelson.

Remark. C^{∞} -approximation holds in c_0 .

Simply let $g: R \to R$ be a C^{∞} function satisfying g(t) = 1 for $|t| \leq 1/2$, g(t) = 0 for $|t| \geq 1$, and $0 < g(t) \leq 1$ for (1/2) < |t| < 1. Let $x = (x_1, x_2, \cdots) \in c_0$ and define $f(x) = \prod_{i=1}^{\infty} g(x_i)$. Then f is a C^{∞} function nonzero in the open unit ball, and zero off it. The argument is then completed as in Lang [2].

Complete details, extensions, and applications of the results in this note will be published elsewhere.

BIBLIOGRAPHY

- 1. J. Kurzweil, On approximation in real Banach spaces, Studia Math. 14 (1954), 213-231.
 - 2. S. Lang, Introduction to differentiable manifolds, Interscience, New York, 1962.
- 3. G. Restrepo, Differentiable norms in Banach spaces, Bull. Amer. Math. Soc. 70 (1964), 413-414.

CORNELL UNIVERSITY AND
STATE UNIVERSITY OF NEW YORK AT STONY BROOK