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Let G be a region in the complex plane such that there is a non-
constant bounded holomorphic function on G, and denote the alge­
bra of all such functions by BH{G). Let H^{G) denote the Banach 
algebra that arises when BH{G) is endowed with the supremum norm. 
In the case where G is the unit disc D, H*>(G) has been extensively 
studied, mostly by a real-variables analysis of the radial boundary 
values of bounded holomorphic functions. 

We consider here another natural topology on BH(G), namely, the 
strict topology j8, introduced by Buck in [2], where he made a pre­
liminary study of the case G = D. In the work that we outline in this 
announcement, a number of intrinsic complex-variables methods are 
introduced, and used in conjunction with the theory of topological 
linear spaces to investigate the structure of /3(G), and to shed some 
light also on the structure of H^(G). Some of the general results ob­
tained here were obtained in a different form, in the special case 
G = D, by Brown, Shields, and Zeiler [ l ] . 

One of our results is that H^{G) is always the dual of a certain 
Banach space of equivalence classes of measures. Letting a{G) denote 
BH(G) under the weak topology arising from this duality, we exhibit 
strong similarities between a(G) and @(G) that can be exploited in 
studying the ideal structure of j3(G). 

The main new tool is the balayage, or sweeping, of measures. In 
point of fact, several different methods of balayage are used. One is 
similar to the balayage of potential theory, another uses duality of 
certain topological vector spaces, and the third uses ideas related to 
the Cauchy integral formula. 

We present here only our main results, without proof. The full 
details will be published elsewhere. The order in which the results 
are presented is a little artificial, since some of the structure theorems 
depend on the balayage theorems. 

Structure. 
DEFINITION. J3(G) is BH(G) under the topology given by the seminorms 
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||/||* = sup{| ƒ(*)*(*) |: zEG}, 

where k runs over the class of all continuous complex-valued functions 
on the closure of G that vanish on the boundary of G. 

DEFINITION. TO say that a (complex) measure fx lives in G means that 
JJL has no mass in the complement of G. 

DEFINITION. M(G) is the Banach space of all bounded Borel meas­
ures JJL that live in G, with 

IUII = J rfUI> 
where \fi\ is the variation of fx. 

DEFINITION. We write \x~vfor /x, v(EM(G) to mean that ffdfx=ffdv 
for eachfÇzBH(G), we write [JJL] for the equivalence class that /z belongs to, 
and we write ffd[fx] for f f dp iffGBH(G). 

DEFINITION. M'{G) is the Banach space of all equivalence classes [/x] 
of measures /u, in M(G), with the quotient norm || [/u]|| =inf {||J>|| : v~n}. 

DEFINITION. OL(G) is BH(G) under the weak topology arising from 
the duality (BH(G), M'(G)), where for f&BH(G) and [JJL](EM'(G), 

(1) (f,M> = ƒƒ*• 

THEOREM. a(G) and /3(G) have the same dual space, namely M'(G), 
with the duality given by (1). 

COROLLARY. a(G) and /3(G) have the same closed subspaces, and the 
same closed convex sets. 

THEOREM. a{G) and /3(G) have the same bounded sets, namely, the 
uniformly bounded sets of holomorphic functions. 

THEOREM. a(G) and /8(G) have the same compact sets. In both a(G) 
and /3(G), a set is compact if and only if it is closed and bounded. 

THEOREM. a(G) and /3(G) have the same convergent sequences; a 
sequence \fn} is convergent if and only if the fn are uniformly bounded, 
and {fn} converges at each point of G. 

THEOREM. A linear subspace of a(G) or /8(G) is closed if and only 
if it is sequentially closed. 

THEOREM. a(G) and /3(G) are not the same topologies-, in fact, /3(G) 
is properly stronger than a(G). Also, /8(G) is complete, but a(G) is not. 

I t is easy to see that /3(G) is a topological algebra. We do not know 
whether this is true of a(G). 

file:///x~vfor
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Balayage. 
DEFINITION. Let Li(G) consist of all measures fi£:M(G) that are 

absolutely continuous with respect to planar Lebesgue measure, with 
||M|| = / ^ | M | &s before. 

DEFINITION. Let L{(G) be the quotient space L{ (G)=Li(G)/Nt 

where N= {niGLi(G): / i^0}. 

THEOREM. Given any measure /JLÇZM(G) and any e>0 , there exists 
a measure vÇ:Li(G) such that v~ix and ||z>|| < ( l + e)||ju||. 

COROLLARY. Mf(G) is isometrically isomorphic to L{(G). 

COROLLARY. M'(G) is separable. 

The above theorem is useful because although M (G) is a somewhat 
pathological space, Li(G) is a familiar space with convenient proper­
ties; in particular, the dual of Li(G) is the familiar space L^G). 

THEOREM. H^G) is the dual of M'(G). More precisely, to each 
fGH00(G) j there corresponds the continuous linear functional Lf in the 
dual of M'(G)y given by 

Lf{[v])= ƒƒ**, 

and the mapping f—>L/ is an isometric isomorphism of H^G) onto the 
dual of M'(G). 

DEFINITION. A subset S of G is called dominating provided that 

sup{ I ƒ(«) | : z E S} - sup{ I ƒ(«) | : z G G} 

for eachfÇzBH(G). 
DEFINITION. A subset S of G is called universal provided that for each 

/xG-^f(G), there is a vÇiM(G) with J"^/x, such that v lives on S. 

THEOREM. A subset S of G is dominating if and only if it is universal 

DEFINITION. Given an open set G', and a closed subset E of G', let 
G — G' — E. We say that E is a set of removable singularities f or BH(G) 
provided that each fÇzBH(G) has an extension FÇÎBH(G'). 

DEFINITION. Given G' and E as above, we say that a measure [i.ÇzM(G) 
is holomorphically free of E to mean that f or some e>0 , there exists a 
measure v that lives in the set 

E<= {z G G: distance (z, E) > e} 

and such that v~n. 

THEOREM. Given G' and E as above, E is a set of removable singulars-
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ties for bounded holomorphic functions if and only if each measure 
juGif(G) is holomorphically free of E. 

THEOREM. Suppose S is a subset of G with no limit points in G. Then 
S is universal if and only if there is a measure vÇ:M(G) that lives in S, 
with v~0 but V5*0. 

The method of proof of this result gives an explicit balayage for­
mula. 

Ideals in /3(G). 

THEOREM. If G is the open unit disc D, then the ideal generated by ƒ 
is dense in P(G) if and only iff is an outer function, and the ideal gen­
erated by f is closed if and only if f is the product of an inner f unction 
and a unit. 

The first part of this result answers a question raised by Buck [2]. 
We have been told that Paul Hessler has a proof of the second part 
of this result. I t is clear that the units in 0(G) are just those /Gj3(G) 
which are bounded away from 0. The above theorem suggests the 
following definitions. 

DEFINITION. In (3(G), interior functions are those that generate closed 
ideals, and exterior functions are those that generate dense ideals. 

PROBLEM. For what regions G does each f(Efi(G) have a unique fac­
torization, modulo units, as the product of an interior function and an 
exterior function? 

THEOREM. If dG is the union of nondegenerate continua and isolated 
points, then the only continuous multiplicative linear functionals on 
j3(G) are the point evaluations at points of G and at removable singulari­
ties of G. 

Rudin [3] has given examples of regions G such that (2(G) has other 
continuous multiplicative linear functionals than the ones described 
above. I t seems likely that each closed ideal in j8(G) is principal, but 
we have not been able to prove this, except in the case G = D. 
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