VARIATIONAL METHODS FOR NONLINEAR ELLIPTIC EIGENVALUE PROBLEMS

BY FELIX E. BROWDER

Communicated September 24, 1964

In the present note, we give a simple general proof for the existence of solutions of the following two types of variational problems:

PROBLEM A. To minimize $\int_{\Omega} F(x, u, \dots, D^m u) dx$ over a subspace V of $W^{m,p}(\Omega)$.

PROBLEM B. To minimize $\int_{\Omega} F(x, u, \dots, D^m u) dx$ for u in V with $\int_{\Omega} G(x, u, \dots, D^{m-1}u) dx = c$.

The solution of the first problem yields a weak solution of a corresponding elliptic boundary-value problem for the Euler-Lagrange equation

(1)
$$Au = \sum_{|\alpha| \leq m} (-1)^{|\alpha|} D^{\alpha} F_{p\alpha}(x, u, \dots, D^m u) = 0.$$

From the solution of the second problem, we obtain a solution under corresponding boundary conditions of the nonlinear eigenvalue problem.

$$(2) \quad Au = \lambda \left\{ \sum_{|\beta| \leq m-1} (-1)^{|\beta|} G_{p\beta}(x, u, \cdots, D^{m-1}u) \right\} = \lambda Bu, \quad \lambda \in \mathbb{R}^1.$$

In §1, we give a complete self-contained treatment of the existence of minima of functionals on reflexive Banach spaces, a treatment which extends and strengthens earlier studies by Lusternik, E. Rothe, Vainberg, and others (see [6], [11], [12], [14], [15]). In §2, we apply the results of §1 to Problems A and B, above. In the case of Problem A, we strengthen and simplify results of Morrey [10] and Smale [13]. The relation of the resulting existence theorem for the solution of the variational boundary-value problem for equation (1) to those obtained by the writer in [2], [3], [4] by operator methods (as well as unpublished results of Leray and Lions) and the results of Višik [16] using other analytical methods, is discussed in detail in [5]. Special cases of the eigenvalue problem treated in Problem B have been treated for A linear by Levinson [7] with $A = \Delta$ on R^2 , and by Berger [1] for general linear A.

1. Abstract variational problems. Let V be a real Banach space. Strong convergence in V is denoted by \rightarrow , weak convergence by \rightarrow . We consider two functions

$$\Phi: V \times V \to R^1,$$

$$g: V \to R^1,$$

and define $f: V \rightarrow R^1$ by $f(v) = \Phi(v, v), v \in V$.

The function Φ is said to be *semi-convex* if both of the following conditions hold:

(a) For each v in V and c in R^1 , the subset $W_{c,v}$ of V given by

$$(3) W_{c,v} = \{u \mid u \in V, \Phi(u,v) \leq c\}$$

is convex.

(b) For each bounded set B of V and each sequence $\{v_i\}$ in V with $v_i \rightarrow v$, $\Phi(u, v_i) \rightarrow \Phi(u, v)$ uniformly for u in B. For fixed v in V, $\Phi(\cdot, v)$ is continuous in the strong topology of V.

THEOREM 1. Let V be a reflexive Banach space, Φ a semi-convex real function on $V \times V$. Let $f(v) = \Phi(v, v)$ for v in V, and let C be a weakly closed bounded subset of V. Then f is bounded from below on C and assumes its minimum on C.

PROOF OF THEOREM 1. We may choose a sequence $\{u_j\}$ from the bounded weakly closed set C such that

$$f(u_j) = \Phi(u_j, u_j) \rightarrow c_0 = \text{g.l.b.} f(u),$$

while

$$u_i \rightharpoonup u_0, \quad u_0 \in C.$$

By property (b) of semi-convexity and the boundedness of C,

$$\Phi(u_i, u_i) - \Phi(u_0, u_i) \to 0.$$

Hence

$$\Phi(u_0, u_j) \to c_0.$$

Let c be any real number with $c > c_0$. Then for $j \ge j_c$, $u_j \in W_{c,u_0}$ as defined by equation (3) above. W_{c,u_0} is convex by property (a), and is closed by the second part of property (b) of semi-convexity. Hence W_{c,u_0} is weakly closed. Since $u_j - u_0$, $u_0 \in W_{c,u_0}$, i.e., $\Phi(u_0, u_0) \le c$. Since c was any number c_0 , it follows that $c_0 > -\infty$ and $c_0 = c_0$. Q.E.D.

As corollaries of Theorem 1, we have the following:

THEOREM 2. Let Φ be a semi-convex real function on $V \times V$, where V is a reflexive B-space, and for v in V, let $f(v) = \Phi(v, v)$. If $f(v) \to +\infty$ as $||v|| \to +\infty$, then f assumes a minimum on V.

PROOF OF THEOREM 2. Set $C = \{v \mid ||v|| \le R\}$ for R sufficiently large.

THEOREM 3. Let V be a reflexive B-space, Φ a real semi-convex function on $V \times V$, and $f(v) = \Phi(v, v)$ for v in V. Let g be a weakly continuous real function on V. Let $C = \{u \mid g(u) = c\}$ for a fixed c in R^1 and suppose that $f(u) \to +\infty$ as $||u|| \to +\infty$ on C. Then f assumes a minimum on C.

PROOF OF THEOREM 3. $C \cap \{u | ||u|| \le R\}$ is weakly closed and bounded for all R > 0.

Let V^* be the adjoint space of V, (w, u) the pairing between w in V^* and u in V.

If $g: V \to R^1$, g is said to be differentiable at v_0 in V if there exists an element $g'(v_0)$ in V^* such that for all h in V

$$g(v_0 + h) = g(v_0) + (g'(v_0), h) + \epsilon(h)$$

where $\epsilon(h) = o(||h||)$ as $||h|| \to 0$. If $\Phi: V \times V \to R^1$, Φ is differentiable at (v_1, v_2) if there exists a pair w_1, w_2 in V^* such that

$$\Phi(v_1 + h_1, v_2 + h_2) = \Phi(v_1, v_2) + (w_1, h_1) + (w_2, h_2) + o(||h_1|| + ||h_2||),$$

and we set $w_1 = \Phi_1'(v_1, v_2)$, $w_2 = \Phi_2'(v_1, v_2)$. If Φ is differentiable at (v_0, v_0) and $f(v) = \Phi(v, v)$, then f is differentiable at v_0 and

$$f'(v_0) = \Phi_1'(v_0, v_0) + \Phi_2'(v_0, v_0).$$

THEOREM 4. Let V be a Banach space, f and g two real functions on V with f and g differentiable at v_0 , $g'(v_0) \neq 0$. If f has a local minimum at v_0 with respect to the set $C = \{v \mid g(v) = g(v_0)\}$, then there exists λ in R^1 such that $f'(v_0) = \lambda g'(v_0)$.

PROOF OF THEOREM 4. Let $V_1 = \{v | v \in V, (g'(v_0), v) = 0\}$, and choose u_0 in V such that $(g'(v_0), u_0) = 1$. If v is any element of V_1 with ||v|| = 1 and ϵ and r are real numbers with $|\epsilon|$, |r| sufficiently small, then

$$f(v_0) \leq f(v_0 + \epsilon v + ru_0)$$

provided that $g(v_0) = g(v_0 + \epsilon_v + ru_0)$. We know that

$$g(v_0 + \epsilon v + ru_0) = g(v_0) + \epsilon(g'(v_0), v) + r(g'(v_0), u_0) + s(\epsilon, r, v)$$

= $g(v_0) + r + s(\epsilon, r, v)$,

where for each fixed v in V_1 , $s(\epsilon, r, v) = o(|\epsilon| + |r|)$. Consider r on the interval $[-\frac{1}{2}|\epsilon|, +\frac{1}{2}|\epsilon|]$, and the quantity $r+s(\epsilon, r, v)$ with $\epsilon \neq 0$ and v fixed. For $|\epsilon|$ sufficiently small, $r+s(\epsilon, r, v)$ is negative at the left endpoint, positive at the right, and continuous in r. We may

choose a value of $r(\epsilon, v)$ in the interval to make $r+s(\epsilon, r, v)=0$, and hence $|r(\epsilon, v)|=o(|\epsilon|)$. For this choice of r, we have

$$f(v_0) \leq f(v_0 + \epsilon v + r u_0) = f(v_0) + \epsilon(f'(v_0), v) + r(f'(v_0), u_0) + o(|\epsilon| + |r|)$$

so that

$$\epsilon(f'(v_0), v) \geq -o(|\epsilon|), |\epsilon| \to 0.$$

Hence $(f'(v_0), v) = 0$ for all v in V_1 and $f'(v_0) = \lambda g'(v_0)$, for some λ in R^1 . REMARK. In [6] and [14], Theorem 4 is called Lusternik's principle and proofs are given for special cases.

THEOREM 5. Let V be a reflexive Banach space, Φ a semi-convex real function on $V \times V$, g a weakly continuous real function on V, $f(v) = \Phi(v, v)$ for v in V. Suppose that f and g are differentiable on V, that for a given constant c in R^1 the set $C = \{v | g(v) = c\}$ is nonempty, and that $g'(v) \neq 0$ for v in C. Suppose further that $f(v) \rightarrow +\infty$ as $||v|| \rightarrow +\infty$ on C, then there exists v_0 in C and λ in R^1 such that $f'(v_0) = \lambda g'(v_0)$.

Theorem 5 is an immediate consequence of Theorems 3 and 4. A useful complement to Theorem 5 is the following:

THEOREM 6. A sufficient condition for condition (a) for semi-convexity to hold is that Φ be everywhere differentiable on $V \times V$ and that $\Phi'_1(u, v)$ be monotone in u for fixed v, i.e., for all u_0 , u_1 in V,

$$(\Phi_1'(u_1, v) - \Phi_1'(u_0, v), u_1 - u_0) \ge 0.$$

PROOF OF THEOREM 6. Let u_0 , u_1 , and v be elements of V, $0 \le \lambda \le 1$. Let $u_{\lambda} = \lambda u_1 + (1 - \lambda)u_0$. To prove condition (a), it suffices to show $\Phi(u, v)$ convex in u for fixed v. Set

$$h(\lambda) = \Phi(u_{\lambda}, v) - \lambda \Phi(u_{1}, v) - (1 - \lambda) \Phi(u_{0}, v).$$

It suffices to show that $h(\lambda) \le 0$ for $0 \le \lambda \le 1$. Since h(0) = h(1) = 0, it suffices to show that $h'(\lambda)$ is nondecreasing on the interval. However,

$$h'(\lambda) = (\Phi_1'(u_{\lambda}, v), u_1 - u_0) - \Phi(u_1, v) + \Phi(u_0, v),$$

so that for $\lambda < \xi$,

$$h'(\xi) - h'(\lambda) = (\Phi_1'(u_{\xi}, v) - \Phi_1'(u_{\lambda}, v), u_1 - u_0)$$

= $(\xi - \lambda)^{-1} (\Phi_1'(u_{\xi}, v) - \Phi_1'(u_{\lambda}, v), u_{\xi} - u_{\lambda}) \ge 0$. Q.E.D.

REMARK. Connections between monotonicity of the gradient and convexity of the functional have been remarked in Minty [9] and

implicitly in Vaïnberg and Kachurovski [15]. Monotone operators between V and V^* have been studied in Browder [2], [4] and Minty [8].

2. Nonlinear eigenvalue problems. We adopt the notation of [2] and [3] in general, except that all our functions will be real-rather than complex-valued. Let Ω be a bounded, smoothly bounded open set in R^n , $n \ge 1$, D^{α} the elementary differential operator $(\partial/\partial x_1)^{\alpha_1} \cdot \cdot \cdot (\partial/\partial x_n)^{\alpha_n}$. We assume that we are given positive integers r and m, a real number p with 1 , and a closed subspace <math>V of the reflexive Banach space $W^{m,p}(\Omega)$ of r-vector functions u on Ω such that $D^{\alpha}u \in L^p(\Omega)$ for all α with $|\alpha| \le m$. Let $\langle \cdot, \rangle$ denote the natural inner product in R^r and for two real-valued r-vector functions u and v on Ω , set

$$[u, v] = \int_{\Omega} \langle u(x), v(x) \rangle dx,$$

where the integration is taken with respect to Lebesgue *n*-measure. Let $\zeta = \{\zeta_{\alpha} \mid |\alpha| = m\}$ and $\psi = \{\psi_{\xi} \mid |\xi| \leq m-1\}$ be elements of the real vector spaces R^N and R^M , respectively, where for each α and ξ , ζ_{α} and ψ_{ξ} are real *r*-vectors. We assume that we are given two functions

$$F(x, \psi, \zeta), G(x, \psi)$$

defined on $\Omega \times R^M \times R^N$ and $\Omega \times R^M$, respectively, measurable in x and C^1 in (ψ, ζ) or ψ . We let F_{α} , F_{ξ} , and G_{ξ} denote the appropriate partial gradients of the functions F and G with respect to ζ_{α} and ψ_{ξ} .

We suppose that F and G satisfy the following system of inequalities:

$$|F(x,\psi,\zeta)| \leq c(\eta) \left\{ g(x) + |\zeta|^p + \sum_{|\xi| \leq m-1} |\psi_{\xi}|^{p_{\xi}} \right\},$$

$$|G(x,\psi)| \leq c(\eta) \left\{ g(x) + \sum_{|\xi| \leq m-1} |\psi_{\xi}|^{p_{\xi}} \right\},$$

where $g \in L^p(\Omega)$, p_{ξ} are exponents satisfying the inequalities

$$(n-p(m-|\xi|))p_{\xi} < np$$
 if $n-p(m-|\xi|) > 0$

and $c(\eta)$ is a continuous function of $\eta = \{\psi_{\xi} | |\xi| < n/p - m\}$. For each u in V, let

$$\zeta(u) = \{D^{\alpha}u \mid |\alpha| = m\}, \quad \psi(u) = \{D^{\xi}u \mid |\xi| \leq m-1\}.$$

Then the functionals

$$\Phi(u, v) = \int_{\Omega} F(x, \psi(v), \zeta(u)) dx$$

and

$$g(u) = \int_{\Omega} G(x, \psi(u)) dx$$

are well defined and continuous on $V \times V$ and V, respectively, g is weakly continuous on V, and Φ satisfies condition (b) for semi-convexity. If we assume further that:

$$|F_{\alpha}(x,\psi,\zeta)| \leq c(\eta) \left\{ g_{1}(x) + |\zeta|^{p-1} + \sum_{|\xi| \leq m-1} |\psi_{\xi}|^{p'\xi} \right\},$$

$$(II) \qquad |F_{\beta}(x,\psi,\zeta)| \leq c(\eta) \left\{ g_{1}(x) + |\zeta|^{q_{\beta}} + \sum_{|\xi| \leq m-1} |\psi_{\xi}|^{q_{\xi\beta}} \right\},$$

$$|G(x,\psi)| \leq c(\eta) \left\{ g_{1}(x) + \sum_{|\xi| \leq m-1} |\psi_{\xi}|^{q_{\xi\beta}} \right\},$$

where $g_1 \in L^{p'-1}(\Omega)$ and $p_{\xi'}$, q_{β} , and $q_{\xi\beta}$ are exponents satisfying the inequalities

$$(n - p(m - |\xi|))p''_{\xi} \le n(p - 1), \text{ if } n - p(m - |\xi|) > 0,$$

 $(n - p(m - |\xi|))q_{\xi\beta} \le n(p - 1) + p(m - |\beta|),$
 $nq_{\beta} \le n(p - 1) + p(m - |\beta|)$

then the functionals Φ and g are everywhere once differentiable with

$$\begin{split} (\Phi_1'(v_1, v_2), u) &= \sum_{|\alpha| \to m} \big[F_{\alpha}(x, \psi(v_2), \zeta(v_1)), \ D^{\alpha}u \big], \\ (\Phi_2'(v_1, v_2), u) &= \sum_{|\xi| \le m-1} \big[F_{\xi}(x, \psi(v_2), \zeta(v_1)), \ D^{\xi}u \big], \\ (g'(v), u) &= \sum_{|\xi| \le m-1} \big[G_{\xi}(x, \psi(v)), \ D^{\xi}u \big]. \end{split}$$

If we assume that each F_{α} is itself differentiable in ζ and that the following semi-ellipticity condition holds:

(III)
$$\sum_{|\alpha|,|\beta|=m} \langle F_{\alpha\beta}(x,\psi,\zeta)\eta_{\alpha},\eta_{\beta}\rangle \geq 0,$$

for all ψ in R^M , x in Ω , and ζ and η in R^N (where $F_{\alpha\beta}$ is the gradient of F_{α} with respect to ζ_{β} , which we assume to exist); then Φ will satisfy the monotonicity condition of Theorem 6 and thereby condition (a) for semi-convexity.

Applying Theorem 2, we have:

THEOREM 7. If F satisfies the inequalities imposed on it in (I), (II), and (III) and if $f(v) = \Phi(v, v) \to +\infty$ as $||v|| \to +\infty$, then f has a minimum on V which is a variational solution in the sense of [2] of the Euler-Lagrange equation

$$Au = \sum_{|\beta| \leq m} (-1)^{|\beta|} D^{\beta} F_{\beta}(x, \psi(u), \zeta(u)) = 0.$$

Applying Theorem 5, we have:

THEOREM 8. If F and G satisfy (I), (II), and (III), if the set $C = \{v | v \in V, g(v) = c\}$ is nonempty and $g'(v) \neq 0$ on C, and if, finally, $f(v) \rightarrow +\infty$ as $||v|| \rightarrow +\infty$ on C, then f has a minimum on C which is a variational solution of the appropriate boundary-value problem for the eigenvalue problem

$$Au = \lambda Bu = \lambda \left\{ \sum_{|\xi| \leq m-1} (-1)^{|\xi|} D^{\xi} G_{\xi}(x, \psi(u)) \right\}.$$

We complete our considerations with the following:

THEOREM 9. (a) If V is $W_0^{m,p}(\Omega)$, the closure of $C_c^{\infty}(\Omega)$ in $W^{m,p}(\Omega)$, the boundary conditions in Theorems 7 and 8 are those of the homogeneous Dirichlet problem.

(b) Condition (III) can be replaced by the weaker integral condition

$$\sum_{|\alpha|,|\beta|=m} \left[F_{\alpha\beta}(x,\psi(v_1),\zeta(v_2)) D^{\alpha} u, D^{\beta} u \right] \geq -c ||u||_{m-1,p}^{p}.$$

(c) Theorem 8 can be specialized to hold under the following more intuitive restrictions than (I) and (II): namely, $|F| < c\{1+|\zeta|^p+|\psi|^p\}$, $|F_a|+|F_\xi| \le c\{1+|\zeta|^{p-1}+|\psi|^{p-1}\}$, $G=u^q$ with $q < np(n-pm)^{-1}$ for n > pm and G an arbitrary continuous function of u for n < pm.

The regularity of the solutions of Theorems 7 and 8 can be derived from known results for linear and mildly nonlinear equations A as well as for the case m=1, r=1.

BIBLIOGRAPHY

- 1. M. Berger, A nonlinear elliptic eigenvalue problem, Dissertation, Yale University, New Haven, Conn., May 1964.
- 2. F. E. Browder, Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc. 69 (1963), 862-874.
- 3. ——, Nonlinear elliptic problems. II, Bull. Amer. Math. Soc. 70 (1964), 299-302.
- 4. —, Nonlinear elliptic boundary value problems. II, Trans. Amer. Math. Soc. (to appear).

- 5. ——, Existence and uniqueness theorems for solutions of nonlinear boundary value problems, Proc. Sympos. Appl. Math. Vol. 17, Amer. Math. Soc., Providence, R. I. (to appear).
- 6. M. A. Krasnoselski, Topological methods in the theory of nonlinear integral equations, GITTL, Moscow, 1956 (English transl., Pergamon Press, New York, 1964).
- 7. N. Levinson, Positive eigenfunctions for $u+\lambda f(u)=0$, Arch. Rational Mech. Anal. 11 (1962), 258-272.
- 8 G. J. Minty, On a "monotonicity" method for the solution of nonlinear equations in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1038-1041.
- 9. ——, On the monotonicity of the gradient of a convex function, Pacific J. Math. 14 (1964), 243-247.
- 10. C. B. Morrey, Jr., Multiple integral problems in the calculus of variations and related topics, Ann. Scuola Norm Sup. Pisa 14 (1960), 1-61.
- 11. E. H. Rothe, Gradient mappings and extrema in Banach spaces, Duke Math. J. 15 (1948), 421-431.
- 12. ——, A note on the Banach spaces of Calkin and Morrey, Pacific J. Math. 3 (1953), 493-499.
- 13. S. Smale, Morse theory and a nonlinear generalization of the Dirichlet problem, Ann. of Math. (to appear).
- 14. M. M. Valinberg, Variational methods for investigation of nonlinear operators, GITTL, Moscow, 1956 (English transl., Holden Day Co., 1964).
- 15. M. M. Vaïnberg and R. I. Kachurovski, On the variational theory of nonlinear operators and equations, Dokl. Akad. Nauk SSSR 129 (1959), 1199-1202.
- 16. M. I. Višik, Quasilinear strongly elliptic systems of differential equations having divergence form, Trudy Moskov. Mat. Obšč. 12 (1963), 125–184.

University of Chicago