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In the present note, we give a simple general proof for the existence 
of solutions of the following two types of variational problems: 

PROBLEM A. To minimize fa F(x> u, • • • , Dmu)dx over a subspace 
VofWm>*(tt). 

PROBLEM B. TO minimize ƒ« F(x, w, • • • , Dmu)dx for u in V with 
/ a G(x, u, • • • , Dm^1u)dx^c. 

The solution of the first problem yields a weak solution of a cor­
responding elliptic boundary-value problem for the Euler-Lagrange 
equation 

(1) Au = X) (-l)]"]D«Fpa(x, u, • • • , D»u) = 0. 
\a\zm 

From the solution of the second problem, we obtain a solution under 
corresponding boundary conditions of the nonlinear eigenvalue 
problem. 

(2) Au = X { Z (-1)W ,G^(*, « , • • • , £>™-lu) \ = \Bu, X G je1. 

In §1, we give a complete self-contained treatment of the existence 
of minima of functionals on reflexive Banach spaces, a treatment 
which extends and strengthens earlier studies by Lusternik, E. Rothe, 
Vainberg, and others (see [ó], [ i l ] , [12], [14], [15]). In §2, we 
apply the results of §1 to Problems A and B, above. In the case of 
Problem A, we strengthen and simplify results of Morrey [lO] and 
Smale [13]. The relation of the resulting existence theorem for the 
solution of the variational boundary-value problem for equation (1) 
to those obtained by the writer in [2], [3], [4] by operator methods 
(as well as unpublished results of Leray and Lions) and the results 
of Visik [16] using other analytical methods, is discussed in detail in 
[S]. Special cases of the eigenvalue problem treated in Problem B 
have been treated for A linear by Levinson [7] with A =A on R2, and 
by Berger [ l ] for general linear A. 

1. Abstract variational problems. Let F be a real Banach space. 
Strong convergence in V is denoted by —», weak convergence by —\ 
We consider two functions 
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$: V X V-*R\ 

V V-*R\ 

and define ƒ: V—+R1 byf(v) =<£(#, V), A G V. 
The function $ is said to be semi-convex if both of the following 

conditions hold: 
(a) For each v in V and c in R1, the subset We,v of V given by 

(3) We,v = {u\uEV, *(«,*) £c} 

is convex, 
(b) For each bounded set B of V and each sequence {vj} in V with 

Vj—*v, <£(«, fly)~-»<i>(w, v) uniformly for u in B. For fixed v in V, $>(•, v) 
is continuous in the strong topology of V. 

THEOREM 1. Let V be a reflexive Banach space, <ï> a semi-convex real 
function on F X F. Let f{v) =$(v, v) for v in F, and let C be a weakly 
closed bounded subset of F. Then ƒ is bounded from below on C and 
assumes its minimum on C. 

PROOF OF THEOREM 1. We may choose a sequence {%} from the 
bounded weakly closed set C such that 

f(m) - *(*ƒ, Uj) -~>£o « g.l.b.ƒ(«), 

while 

Uj —* «o, «o G C* 

By property (b) of semi-convexity and the boundedness of C, 

$(Uj} Uj) — $(Uo, Uj) - » 0. 

Hence 

*(«o, %) -* co. 

Let £ be any real number with c>c0. Then ior j*zje, Uj(EWCtUo as 
defined by equation (3) above. We,uo is convex by property (a), and 
is closed by the second part of property (b) of semi-convexity. Hence 
TFC,U0 is weakly closed. Since Uj—^Uo, WoGWct1io, i.e., $(u0, u0)i£c. 
Since c was any number >c0, it follows that c0> — oo and f(u0) =cQ. 
Q.E.D. 

As corollaries of Theorem 1, we have the following: 

THEOREM 2. Let $ be a semi-convex real function on F X F, where V 
is a reflexive B-space, and for v in F, letf(v) — $(v, t/). Iff(v)—*+ «o as 
||v||—»+ co, then f assumes a minimum on F* 
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PROOF OF THEOREM 2. Set C= {v \\\v\\ ^R} for R sufficiently large. 

THEOREM 3. Let V be a reflexive B-space, 3> a real semi-convex June-
Hon on VX V, andf(v) =$(v, v) for v in V. Let g be a weakly continuous 
real function on V. Let C= {u\ g(u) =c\ for a fixed c in R1 and sup-
pose that ƒ(«)—»+ °° as ||z^||—>+ oo on C. Then f assumes a minimum 
on C. 

PROOF OF THEOREM 3. Cn{w|||w|| ^R) is weakly closed and 
bounded for alii? > 0 . 

Let V* be the adjoint space of V, (wt u) the pairing between w in 
V* and u in V. 

If g: V—>Rl, g is said to be differentiate at v0 in V if there exists 
an element g'(z>o) in V* such that for all hinV 

g(v0 + h) = g(vo) + tffro), *) + <h) 

where e(h) =o(\\h\\) as ||*||->0. If * : VX V->R\ $ is differentiable at 
(vi, v2) if there exists a pair wi, w2 in V* such that 

*(*i + *i, vt + h2) = »(n, v2) + (wh hO + (w2, h2) + o(||Axil + p 2 | | ) , 

and we set Wi=${ (vi, v2), w2=$2(yi, v2). If $ is differentiable at 
(v0, *>o) and f(v) =$(v, v), then ƒ is differentiable at v0 and 

f'(vo) = $i (v0, VQ) + $2(vo, VQ). 

THEOREM 4. Let V be a Banach space, ƒ and g two real functions on 
V with f and g differentiable at v0, g'(vo) 5^0. Iff has a local minimum 
at vo with respect to the set C— {v\g(v) = g(vQ)}, then there exists X in 
Rl such thatf(vo) =Xg'(tf0). 

PROOF OF THEOREM 4. Let Vi= {v\v<EV, (g'(v0), v)=0}, and 
choose u0 in V such that (g'(tfo), w0) = l. If v is any element of V\ 
with |H| = 1 and e and r are real numbers with | e | , |r | sufficiently 
small, then 

f(vo) ^ f(v0 + ev + ruo) 

provided that g(v0) =g(vo+€v-\-ru0). We know that 

g(vo + ev + ruo) = g(v0) + e(g'(v0), v) + r(g'(v0), u0) + s(e, r, v) 

= g(v0) +r + s(€, r, v), 

where for each fixed v in Vi, s(e, r, v)=o(\e\ +\r\). Consider r on 
the interval [ — è | e | , + è | « | ] , and the quantity r+s(e, r, v) with 
e?*0 and v fixed. For | e| sufficiently small, r+s(e, r, v) is negative at 
the left endpoint, positive at the right, and continuous in r. We may 



1965] VARIATIONAL METHODS FOR EIGENVALUE PROBLEMS 179 

choose a value of r(<?, v) in the interval to make r+s(e, r, v)=0, and 
hence |r(e, v)\ =o(\ e\). For this choice of r, we have 

f(vo) ^ f(vo + eo + ruo) 

= f M + *(f'(vo), v) + r(f'(vo), uo) + o( I € I + I r\ ) 

so that 

*(f'(vo),v)^ - o ( | e | ) , | e | - * 0 . 

Hence (J'(vo), v)=0 for all v in Vi and f'(v0) =Xg'(z>0), for some X in R\ 
REMARK. In [6] and [14], Theorem 4 is called Lusternik's principle 

and proofs are given for special cases. 

THEOREM 5. Let V be a reflexive Banach space, $ a semi-convex 
real function on VX V, g a weakly continuous real function on V, 
f(v) =$(v, v) for v in V. Suppose that f and g are differentiable on V, 
that f or a given constant c in R1 the set C= {v\g(v)=c} is nonempty f 

and that g 'C^^O for v in C. Suppose further that f(v)-*+co as 
\\v\\—>+°° on C, then there exists v0 in C and X in R1 such that f'(vo) 
= Xg'(!/o). 

Theorem 5 is an immediate consequence of Theorems 3 and 4. 
A useful complement to Theorem 5 is the following: 

THEOREM 6. A sufficient condition for condition (a) for semi-con­
vexity to hold is that $> be everywhere differentiable on VXV and that 
&{ (u, v) be monotone in u for fixed v, i.e., for all u0t U\ in V, 

($i («l, v) - $ i (u0, v), «i - Uo) ^ 0. 

PROOF OF THEOREM 6. Let u0, uh and v be elements of V, 0 gX ^ 1. 
Let Wx = Xwi+(l— X)w0. To prove condition (a), it suffices to show 
$(#, v) convex in u for fixed v. Set 

h(\) = $(#x, v) — X$(«i, v) — (1 — X)$(wo, v). 

It suffices to show that h(\) ^ 0 for O^X^l . Since h(0) =A(1) =0 , it 
suffices to show that h'(\) is nondecreasing on the interval. However, 

A'(X) = ($i («x, v), u\ - Uo) - $(«i, i>) + #(«o, fl), 

so that for X<£, 

A'(£) - A'(X) = (*/ (w*, *) - $i' (%, *), tfl - uo) 

= ft - X)"1^/ (*«, «0 - *i' («A, «0, *« - «0 ^ 0. Q.E.D. 

REMARK. Connections between monotonicity of the gradient and 
convexity of the functional have been remarked in Minty [9] and 
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implicitly in Vaïnberg and Kachurovski [15]. Monotone operators 
between F and V* have been studied in Browder [2], [4] and Minty 
[8]. 

2. Nonlinear eigenvalue problems. We adopt the notation of [2] 
and [3] in general, except that all our functions will be real- rather 
than complex-valued. Let £2 be a bounded, smoothly bounded open 
set in Rn, n^l, Da the elementary differential operator (d/dxi)ai • • • 
(d/dxn)

an. We assume that we are given positive integers r and m, a 
real number p with \<p < 00, and a closed subspace V of the reflexive 
Banach space WmtP(Q) of r-vector functions u on 0 such that 
D"w£Lp(0) for all a with | a | ^ w . Let ( , ) denote the natural inner 
product in Rr and for two real-valued r-vector functions u and v on Q, 
set 

[u, v] = I (u(x)tv(x))dxy 

where the integration is taken with respect to Lebesgue w-measure. 
Let f = {f«| \OL\ =m} and yp= {\pç\ |£ | ^ m —1} be elements of the 

real vector spaces RN and RM, respectively, where for each a and 
£, f« and fc are real r-vectors. We assume that we are given two 
functions 

P(x, *, f), G(x, ft 

defined on Q,XRMXRN and Q,XRM, respectively, measurable in x and 
Cl in (yp, f) or \f/. We let Fat F^ and G$ denote the appropriate partial 
gradients of the functions F and G with respect to fa and ^ . 

We suppose that F and G satisfy the following system of in­
equalities: 

I Ft*, #, f) I ^ *(*) {*(*) + I r I* + 2 , I *« h } . 
(I) l msm-i ; 

where g£Z>(Q), £« are exponents satisfying the inequalities 

(w - p(m- | £ | ))ƒ>{ < w£ if n - #(w - | £ | ) > 0 

and c(rj) is a continuous function of 77 = {^| |£ | < n/p — m}* 
For each w in V, let 

Then the functional 
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•(f*,*) = f ^(*, * w , r(«0) <** 

and 

g(w) « I G(a, ^(w)) <ta 

are well defined and continuous on VX V and V, respectively, g is 
weakly continuous on V9 and $ satisfies condition (b) for semi-
convexity. If we assume further that: 

(II) I F,(x, *, f) | g e(„) L(x) + I f |f, + i ; I ^ I v } , 
I |f|Sm-l / 

|G(*,*)| S«(n){ft(*)+ S liAflv}, 

where giC.Lp'~l(ü) and £/ , qp, and g^ are exponents satisfying the 
inequalities 

(» - #(» - I | | ))ƒ>/ ^ »(ƒ> - 1), if n - pirn - \i\ ) > 0, 

(n - l(m - U | ) ) j* g »(# - 1) + p(m - | 0 | ), 

nqp^nip- I) + p(m - | /? | ) 

then the functional $ and g are everywhere once differentiable with 

(*•/(»!, »*),«) = E [*.(*, *(»0, rW), ö-«], 

( « (*i, *o, «o - £ to(*> *(»*), «*», a**], 

If we assume that each Fa is itself differentiable in f and that the 
following semi-ellipticity condition holds: 

(HI) E <F<*(x,hnva,w)Z0f 
]a|,I/3|«w» 

for all yp in RM, a; in 0, and f and 77 in RN (where Fap is the gradient of 
Fa with respect to $>, which we assume to exist) ; then $ will satisfy 
the monotonicity condition of Theorem 6 and thereby condition (a) 
for semi-convexity. 

Applying Theorem 2, we have: 
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THEOREM 7. If F satisfies the inequalities imposed on it in (I), (II), 
and (III) and if f(v)=$(v, v)—>+oo as ||»||—»+<*>, then ƒ has a 
minimum on V which is a variational solution in the sense of [2 ] of the 
Euler-Lagrange equation 

Au= E ( - l P ' Z W s , *(«), r(«0) = 0. 

Applying Theorem 5, we have: 

THEOREM 8. If F and G satisfy (I), (II), and (III), if the set 
C= {v\ v<E V, g(v) =c} is nonempty and gf(v) ?*0 on C, and if, finally, 
f(v)—>+ co as \\v\\—»+ oo on C, then f has a minimum on C which is a 
variational solution of the appropriate boundary-value problem for the 
eigenvalue problem 

We complete our considerations with the following: 

THEOREM 9. (a) If Vis W£*(Sl), the closure of C?(Q) in Wm>p(tt), 
the boundary conditions in Theorems 7 and 8 are those of the homo­
geneous Dirichlet problem. 

(b) Condition (III) can be replaced by the weaker integral condition 

£ [F«(x, Mi), tM)D\ rfu] â - *|M|Li„. 
|«|,||3|-m 

(c) Theorem 8 can be specialized to hold under the following more in­
tuitive restrictions than (I) and (I I) : namely, \F\ <c{l + | f | p + | ^ | 3 > } , 
| F a | + | F * | â c{ l + | r | * ~ 1 + M p - 1 } , G = u* with q<np(n-pm)~l for 
n>pm and G an arbitrary continuous f unction of ufor n<pm. 

The regularity of the solutions of Theorems 7 and 8 can be derived 
from known results for linear and mildly nonlinear equations A as 
well as for the case m = 1, r = 1. 
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