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1. Introduction. This work is a sequel to [2], although it can be 
read independently. In the paper on which this announcement is 
based we develop a differential-geometric formalism for variational 
problems that can serve as well for multiple as for single integral 
problems, that does not require the introduction of local coordinate 
systems (which is often awkward in geometric situations) and that is 
well-adapted to computation. For example, we compute quite easily 
the second variation formula for minimal submanifolds of Rieman-
nian spaces (which apparently is not in the literature) and can then 
present some geometric applications, since the geometric meaning 
of the terms is very clear in our formula 3.2. 

The consideration of variational problems in "canonical form" (see 
below for the definition) leads to a description of the extremal sub-
manifolds in terms of Cartan's theory of exterior differential systems. 
We will make use here of the geometric ideas and notation that were 
introduced in [3 ] for dealing with Cartan's theory. 

2. The first and second variation. Let N be an oriented manifold 
with oriented boundary dN. Let M be another manifold, with 
dim iV^dim M. Let E be the space of submanifold maps of N into 
M. For <£££, the "tangent space" to E at $, denoted by E+, is a map, 
typically denoted by v, of N—*T(M) ( = the tangent bundle of M) 
such that v(p)Q:M^p) for p(E.N. A deformation /—»<£* of <f>, i.e., a 
curve in E beginning at <£, defines an element v £ E ^ : For pÇLN, v(p) 
is the tangent vector to the curve t-*<l>t(p) a t £ = 0. The following 
formula is proved in [3]: 

2 . 1 . — *?(») = <i>*(v H de) + d<t>*(v n e) 
dr I wo 

for each differential form 0 on M. 
In general, the calculus of variations involves the theory of critical 

points of a real-valued function L on E, with L(<£) obtained by inte­
grating a function of the derivatives of <£ over N. The given data for 
a problem in canonical form is an r-differential form 0 (r = dim N) and 

1 This work was supported by the Mathematics Division of the Air Force Office 
of Scientific Research. 

145 



146 ROBERT HERMANN [January 

a differential ideal I of differential forms on M. L(cj>) is then defined 
as JN<I>*(0). Let E(J) be the set of <££E that are integral submani-
folds of / , i.e., satisfy <j>*((S) = 0 for all <o£/. The problem is to study 
the critical points of L restricted to E(I). 

I t seems that any variational problem can be prolonged to one in 
canonical form [4]. Note also that Lepage and his coworkers have 
shown that the problems in canonical form are well-adapted to dis­
cussing the "extremal field" idea in full generality. 

The first variation formula follows immediately from 2.1: 

2 .2 . —£(*«) 
at t-o J dN J N 

In order that </>t lie in E(I), the infinitesimal deformation v should 
satisfy the linear variational equation 

2 . 3 . d<f>*(y "]co) + 4>*(y 1 dœ) = 0 for all « G / . 

We say that # £ £ ( / ) is an extremal if: 

2 .4 . 4>*(y ~~] dB) = 0 for all ^ G ^ satisfying 2.3. 

If 2.4 is true for all v £ E ^ , we say that <f> is an extremal of the first kind. 
Notice that they can be described as the integral manifolds of the 
differential ideal generated by I and the X | dB, where X runs over 
the vector fields of M. This type of extremal gives the simplest second 
variation formula; # £ £ ( ! ) will be one of this kind for the rest of the 
paper. 

We can also read off from 2.2 the definition of transversality; 
v£-E$ is transversal to (/> at the boundary if : 

2.5. <l>*(v~~\d) = 0 when restricted to dN. 

To find the second variation, we must compute d2(L(<t>t))/dt2 a t 
J = 0. If 2.5 is true, it is readily verified that the result only involves 
the values of v on N, hence, in computing it, we can suppose without 
loss in generality that v is the restriction to <£(iV) of a vector field X 
on V(M), such that each curve t-*l>t(p) is an integral curve of X. 
Then 

-L{4>t) = f *?(I1J)+ f ' *? ( ! ! 
at J dN J N 

de), 

hence 

d* 
2.6. —L(ét) 

dl* 
= f <i>*(x-)d(x-\e))+ f 4>*{x-\d(x-\ty). 

1-0 J dN ^ N 
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It is readily verified directly now that the integrands of 2.6 only in­
volve the derivatives of X restricted to N. 

3. Minimal submanifolds. Now suppose that M is an oriented Rie-
mannian manifold of dimension m. Choose the following range of 
indices and summation conventions: l ^ a , b, • • '^r\r-\-\Su, v, • • • 
:gra; 1 ^ i , j , • • • rgw. For <t>(EEf L(<t>) is now the volume of N with 
respect to the Riemannian metric induced by <j>. This can be put in 
canonical form in the following way: Choose an orthonormal basis 
(<ûi) for 1-forms on M such that<^*(a)w) =0 . Let 0 = coiA • • • A^r, and 
let / be generated by the œu. (Even if such a global choice of frame is 
not possible, the results obtained using this choice hold in general 
because they are independent of frame. To be completely precise, 
a standard sort of patching argument would be needed.) Let (o>,-y) 
be the connection forms with respect to the given moving frame, and 
let (Q»y) be the curvature forms. 

For simplicity, we will only consider here the case where N is 
compact. I t can then be seen that the tangential component of v does 
not contribute to the second variation, hence v can be supposed a 
cross-section to the normal bundle of <1>(N)} which is denoted by 
^(N)-1. This bundle has a linear connection: In terms of the moving 
frames considered above, the connection forms are (cowv). The condi­
tion that this connection be flat is: 

3 . 1 . «*(coM« A coa„ + Quv) = 0. 

The second fundamental forms of <{>(N) are <^*(cowa*wa). For example, 
3.1 is satisfied if M is of constant curvature and if all the symmetric 
transformations determined by the second fundamental forms com­
mute. 

Using this connection and the induced metric on JV, we can define 
a Laplace operator v—»Av on cross-sections of the normal bundle. The 
main properties we will need are that /iv(Av, v)#*(0) is nonpositive 
(always assuming N compact), and zero if and only if v has zero co-
variant derivative with respect to this connection. I t can be shown, 
using 2.4, that </> is an extremal if and only if the traces of the second 
fundamental forms are zero (i.e., 0*(o?MiA^2A • • • A^r+coiA^«2 
ActfaA • • * A<or+ * * " ) —0)» a n d that it is then an extremal of the 
first kind. Making 2.6 explicit now gives the second variation 
formula: 

- f {-(Av.v) + IMftXto - R(v))H*(0). 
t-9 JN 

3.2. 
d* 
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R(v(p)), for pÇzNj is denned as follows: Choose any orthonormal 
basis of $(i\O0(p), s aY «it • • • i wr. R(v(p)) is then K(v(p), « i ) + • • • 
^( v (^)» wr), where iC( , ) denotes the sectional curvature (with 
respect to the metric on M) of the plane spanned by the two vectors. 
\(v(p)) is denned as the sum of the squares of the eigenvalues of the 
second fundamental form of <f>(N) in the unit direction determined by 
v(p). 

Finally, we can, because of the very simple form of 3.2, derive some 
immediate geometric conclusions, generalizing well-known facts in 
the geodesic case, i.e., dim JV= 1. 

If the sectional curvature of M is nonposuive, then the second variation 
is non-negative, indicating, for example, that, generically, the minimal 
imbeddings of N are isolated. 

If the curvature of M is positive, if N is simply connected, if 3.1 is 
satisfied, and if the eigenvalues of the second fundamental forms of<j>{N) 
are suitably majorized by the curvature of M, then there are imbeddings 
of N arbitrarily close to <f> which have less area. 

Judging from a talk given by him at Berkeley recently, there is 
some relation of the results in this section to as-yet-unpublished work 
by J. Simons. His methods seem to be different. 

Added in proof. v~\d denotes the contraction of the form 6 by the 
vector field v« 
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