11. Solomon W. Golomb: Random permutations.

Let L_N be the expected length of the longest cycle in a random permutation on N letters, and let $\lambda_N = L_N/N$. (Thus, $\lambda_1 = 1$, $\lambda_2 = 3/4$, $\lambda_3 = 13/18$, $\lambda_4 = 67/96$, etc.) It is easily shown that the sequence $\{\lambda_N\}$ is monotonically decreasing, and hence a limit λ exists. Computation has shown $\lambda = .62432965 \cdot \cdot \cdot$, but nothing is known of the relationship of λ to other constants. What can be proved about the irrationality or transcendence of λ , and its relationship to classical mathematical constants? (Some nearby values *un*equal to λ include 5/8, $1-e^{-1}$, $(5^{1/2}-1)/2$, and $\pi/5$.) (Received June 8, 1964.)

ERRATA

Robert R. Korfhage: Correction to 'On a sequence of prime numbers.'

It has been brought to my attention that because of the lack of an overflow check in the programming system used the factors listed for n=7 are in error. Thus the value of P_8 is also wrong. Present knowledge indicates that probably $P_9 > P_8$, and thus Mullin's problem is still open. (Received July 16, 1964.)