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Introduction. The random walk generated by the distribution func­
tion (d.f.), F, is the sequence Sn = Xi+ • • • +Xn, of sums of inde­
pendent and .F-distributed random variables. If P\ \ Sn\ < 1, i.o.} = 1, 
F is called recurrent.1 If F is not recurrent, P{ | 5 n | —>°° } = 1 [ l ] , 
and F is called transient. This note contains a proof that there are 
recurrent distributions with arbitrarily large tails. This assertion was 
made without proof in [2], where it is shown that for convex distribu­
tions, such behavior cannot take place. 

t. Comparing random walks. We shall prove the following theo­
rem. 

THEOREM. If e = e(x) is defined for x^O, and e(x) —^0, as x—»oo, 
then there is a recurrent distribution f unction F, for which, for some #o, 

(1.1) 1 - F(x) = F(-x) ^ e(x), x ^ XQ. 

This result may be restated in the following way. For any d.f. G, 
there is a recurrent d.f. F, and a sample space W on which sequences 
Xn — Xn(w), Yn= Yn(w), n — lj 2, • • • , may be defined so that for 
each w(E.W, 

(1.2) | Yn(w) I < I Xn(w) I , sign Yn(w) = signX„(w), » = 1, 2, • • • , 

where Fn , n= 1, 2, • • • , are independently G-distributed, and Xn9 

n = l, 2, • • • , are independently F-distributed. Considering G tran­
sient, we have 

(1.3) P{\ F i + • • • + Yn\ ->oo, | X i + • • • + Xn\ < l,i.o.} = 1 

We remark that F cannot be chosen convex. If F is (eventually) 
convex, and 1 — F(x) = F( — x) ^ 1 — G(x) =G( — x), where G is tran­
sient, then F is also transient [2]. 

The idea of the proof of the theorem is to move out the mass of 
G and bunch it up, leaving large gaps, so that the remaining steps 
somehow cancel themselves out. 

2. Proof of the cancellation theorem. For symmetric F, the con­
dition that F be recurrent is a tail condition [2], and may be stated 

1 i.o. or infinitely often here means for infinitely many w = l, 2, • • • . 
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in terms of the characteristic function, <j>(z)—f cos xz dF(x), as 

(2.1) f (1 - ^ ( ö ) - 1 * =» oo. 
J o 

Since any function e of our theorem is majorized by a piecewise 
constant function, continuous except at integers, and decreasing to 
zero, we may restrict ourselves to functions of this type. 

We shall prove the stronger assertion. 

LEMMA. If pn>0, n = l, 2, • • • , ]C£n<°° , an^ 0 < ^ n î °°, are 
given, then 

(2.2) I ( 2^>n(l - COS Xnt)y
idt « oo , 

J o 

/or some xn^yn, n~ 1, 2, • • ». 

Assuming the lemma, choose Xo so that e(x^")^l/2, and set 
Pn = e(y~) — e(y„), where yn, n—l, 2, • • • , are the jumps of e to the 
right of Xo. We define F to have mass pn a t ±x n , n— 1, 2, • • • , 
provided by the lemma. The remaining mass of F, 1 — 2e(xô) 
= 1 — 2 y^sfin is placed at zero. As defined, F is symmetric, and 

i - ^ ) = E ^ » è Z ^ è €(*), 

for x>Xo. By (2.2), we have (2.1), and F is recurrent. 
To prove the lemma, assume that no=zO<ni< • • • <nk have al­

ready been defined (start at fc = 0), and that Xi, • • • , xnjfc have been 
chosen so that xn^yni n — 1, 2, • • • , rik, and 

(2.3) f ( £ #»(1 - cos XnO + 2 2 #») * à ft. 

We shall show that it is possible to choose nk+i>nk and xnA+i, • • • , 
#njb+n so that xnà;yn , ^<w^Wfc+i , and so that (2.3) holds with ft 
replaced by ft + 1. Having shown this, Xfi a r e then inductively defined 
for all n = l, 2, • • • and xn^yn. Moreover, for any ft, 

(2.4) 
J Œ M 1 ~ COSXnO)""*1^ 

0 

^ I ( H PniX ~ COS Xnt) + 2 X) Pn ) * , 

and by (2.3), (2.2) follows. 
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We now show that nk+i = tn, and xn]c+i = xnA.+2 = • • • =ocnk+1=^x can 
be defined, where x*zynk+v and m>n^ This is a consequence of the 
following assertion, where a = ftk is fixed 

lim lim I ( 23 Pn(l ~ cos #n/) 

(2.5) + ( £ M ^ ~ c o s x t ) + 2T, £») A = « . 

Since ]C»*sa Pn(\— cos xn£)^c/2 for some fixed c > 0 , we find that 
(2.5) is a consequence of (2.6), 

(*2 + 1 - cos xt + e2)~ldt = oo. 
- - - 0 

Writing fl* = ^ L ^ I / M / I - I ) ^ * ^ ™ , and using the fact that 1—cos 
r^cr2, for some c > 0 , we have only to show that 

x /» 2r 

(2.7) lim lim x~l £ j (nH~* + r2 + e 2 ) " 1 ^ = oo. 
«-•0 Z-+ oo n = l ^ 0 

Noting that a2
1+al+al^(ai+a2+az)2 for a t ^ 0 , i = l , 2, 3, and 

integrating, the sum in (2.7) is at least 

X /» 1 

x~l ]T) I (nx~l + r + e)~2dr 

(2.8) " = l J 0 

X 

= 23 tf-1^"1 + e)~l(n%~~1 + 1 + e) -1. 
n = l 

For € < 1 , this sum is at least ]Cn=i (w + ex)""^"1. Now, as x—>oo, 

(2.9) Z) (» + ^ ) - x = log *(1 + e) - log €X + 0(1). 
n = l 

Hence the first limit in (2.7) is log 1+e""1, which, indeed, tends to 
infinity with e"*1. This proves the assertions. 
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