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Introduction. The random walk generated by the distribution func-
tion (d.f.), F, is the sequence S,=X1+ : - - +X,, of sums of inde-
pendent and F-distributed random variables. If P{|S,| <1,i.0.} =1,
F is called recurrent.! If F is not recurrent, P{|S,|—w}=1 [1],
and F is called transient. This note contains a proof that there are
recurrent distributions with arbitrarily large tails. This assertion was
made without proof in [2], where it is shown that for convex distribu-
tions, such behavior cannot take place.

1. Comparing random walks. We shall prove the following theo-
rem,

THEOREM. If e=e€(x) is defined for x=0, and e(x)—0, as x— o,
then there is a recurrent distribution function F, for which, for some x,

1.1 1 — F(x) = F(—x) = (), x = %o

This result may be restated in the following way. For any d.f. G,
there is a recurrent d.f. F, and a sample space W on which sequences
X,.=X,(w), V,=Y,(w), n=1, 2, - - -, may be defined so that for
each w&EW,

(1.2) I Yn(w)l < | Xn(w) l , sign V,(w) = signX,(w), n=1,2,-- -,

where Y,, n=1, 2, + - -, are independently G-distributed, and X,,
n=1, 2, - - -, are independently F-distributed. Considering G tran-
sient, we have

(1.3) P{| Vit - -+ V| » oo, | Xi+ -+ Xu| <li0} =1
We remark that F cannot be chosen convex. If F is (eventually)
convex, and 1— F(x)=F(—x)=1—G(x) =G(—x), where G is tran-
sient, then F is also transient [2].
The idea of the proof of the theorem is to move out the mass of

G and bunch it up, leaving large gaps, so that the remaining steps
somehow cancel themselves out.

2. Proof of the cancellation theorem. For symmetric F, the con-
dition that F be recurrent is a tail condition [2], and may be stated

1i.0. or infinitely often here means for infinitely many n=1, 2, - - -,
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in terms of the characteristic function, ¢(z) = [ cos xz dF(x), as
1
(2.1) f (1 — ¢@®) 4t = o,
0

Since any function € of our theorem is majorized by a piecewise
constant function, continuous except at integers, and decreasing to
zero, we may restrict ourselves to functions of this type.

We shall prove the stronger assertion,

LEMMA. If $,>0, n=1, 2, -+, D p.<o, and 0<y, T «, are
given, then
1
(2.2) f (2o pa(l = cos 4,0))"ldt = oo,
0

for some X, =y, n=1,2, -,

Assuming the lemma, choose x, so that e(x;)=<1/2, and set
pn=¢€(y;) —e(y}), where y,, n=1, 2, - - -, are the jumps of € to the
right of xo. We define F to have mass p, at *+x,, n=1, 2, - - -,
provided by the lemma. The remaining mass of F, 1 — 2e(xy)
=1-—2 an is placed at zero. As defined, F is symmetric, and

1—F@) = D pa= D po =€),

2T Unz

for x>xo. By (2.2), we have (2.1), and F is recurrent.

To prove the lemma, assume that #n,=0<n;< - - - <n; have al-
ready been defined (start at k=0), and that x,, + - -, x,, have been
chosen so that x,=v,, =1, 2, - + -, 1, and

1 -1
(2.3) f ( > pa(l — coswal) +2 > pn> dt = k.
0 nsng n>ng

We shall show that it is possible to choose #+1>n; and %44, + + -,
Xnpepy SO that x,=v,, 7, <n=mry1, and so that (2.3) holds with k
replaced by 2+ 1. Having shown this, x, are then inductively defined
forallw=1, 2, - - - and %, =y,. Moreover, for any £,

fl(zpn(l — oS %,1))"dt

(2.4)

> fl( > pa(l — cosaat) +2 D Pn>—ldi,

nsng n>ng

and by (2.3), (2.2) follows.
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We now show that ngp=m, and X, 11 ="=%n42= * * * =%, =% can
be defined, where ¥ = ¥,,,,, and m >n;. This is a consequence of the
following assertion, where a =n; is fixed

1
lim lim < > pa(1 — cos x,l)
0

mow gow nsa

@.5) +( > p,.) (1 —cosat) +2 3 ;bn)_ldt - .

n=a+1 a>m
Since Z,.é,, pa(l—cos x,t) =ct? for some fixed ¢>0, we find that
(2.5) is a consequence of (2.6),

2T

(2.6) lim lim @+ 1— cosat+ €)7ldt = .

e—0 z— 0

Writing [2"= > % 1 [or(n—1)ste<zen, and using the fact that 1—cos
r < cr?, for some ¢>0, we have only to show that

z 27
2.7 lim lim %! Ef (22 4 12 + &)"dr = .
n=1v 0

€e—0 z— 0

Noting that a}+ai+ai=(a1+as+as)? for a;20, ¢=1, 2, 3, and
integrating, the sum in (2.7) is at least

T 1
Y (nx=t 4+ r + ¢)~2dr
n=1lv 0

(2.8) .
=2 a7 (™ + 7 (na + 1 + 7L

n=1

For e<1, this sum is at least Y %_; (n+ex)~13-1. Now, as x— o,
(2.9) 3 (4 ex)"t = log (1 + ¢) — log ex + O(1).
n=1

Hence the first limit in (2.7) is log 14+€7!, which, indeed, tends to
infinity with €1 This proves the assertions.
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