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It is well known [ l ] , [4] that Poisson's formula for the value at the 
origin O of a function which is harmonic inside a circle (x— x0)

2 

+ (y — y0)
2 = A2 can be written in the form 

1 r 2« R(0 + v)u(R(d), 6) + R(9 + ir)u(R(d + T), 6 + ir) 
u(0) = — I dd, 

2TTJ o R(6) + R(0 + T) 
where r = R(6) is the polar equation of the boundary. Thus the value 
of a harmonic function at any point in a circle is an average of the 
values obtained by linear interpolation of the boundary values at the 
ends of each chord through the point. 

In particular, it follows that 

R(0 + w)u(R(6), 6) + R(6)u(R(d + *•), 0 + w) 
u(0) S max • 

R(o) + R(e + T) 
It is tempting to conjecture that a similar inequality holds for har­

monic functions in any convex or even star-shaped domain. Recently 
J. Barta [2], [3] has given two incomplete proofs of this conjecture. 

We shall show that in general no inequality of the form 

/IN r^ ^ „ R(d + *XR®>e) + WMW + *),(> + *-) 
(1) u(0) < M max 

R(0) + R(0 + T) 
can hold for all harmonic functions in a star-shaped domain r<R(9). 
In fact, an inequality of the form (1) holds for each point 0 of a con­
vex domain D only if D is the interior of a circle. 

We first prove: 

LEMMA. Let G be the Green's function with singularity at 0 for the 
two-dimensional domain D:r<R(6). An inequality of the form (1) holds 
for all harmonic functions u if and only if the identity 

R(e)(R(ey + R'teyy* — (R(e), e) 
dn 

(2) 
dG 

= R(e + r)(R(e + %y + R'{e + iryyi*— (R(e + *),$ + *-) 
dn 1 This research was supported by NSF Grant No. GP-2280. 
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holds f or all 0. If (2) is satisfied, (1) holds with M=l. 

PROOF. Let a be a constant such that 

R(fi + T)U(R(6), 6) + R{B)u{R(6 + T),6 + TT) 
(3) g a 

R(6) + R(fi + TT) 
for all 0. 

We write the representation 

r dG 
u{0) = — (h u ds 

J r=/3(0) aft 

in the form 

r 2 \ , dG ds 
(4) «(O) - a - [«(*(0), fl) - a] — («((?), 0) ~~ dd. 

J o on dd 
In the identity 

+ [/(Ö) - f(o + x)][g(e) - g(o + T)\\do 

we let 

/(0)g(0)<H = - I {[/(e) + ƒ(» + *•)] k(«) + g(e + x)j 

«(22(0), 0) - a 
(5) /(0) = , 

^ R(0) 
dG ds 

g(0) = -R(fi—(R(e),6) — 
dn dd 

(6) 
= - R(e)(R(ey + R'ieyy" — (R(e), e). 

dn 

Then g (0)^0 . By (3), 

(7) f(e)+f(d + T)èO. 

Thus, 
(8) u(0) ^ a + -J" f '[W) - ƒ(« + *)] [g(0) - g(0 + w)]d6. 

I J o 

Equality holds if / (0)+/ (#+7r)^O; that is, for those boundary 
values u(R(6), 6) satisfying 

R(6 + v)u(R(6), 6) + R(d)u(R(d + TT), 0 + TT) = a[R(d) + R(6 + TT)]. 
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If f(0) is made to satisfy only this condition, the function f (6) —/(Ö+TT) 

is completely arbitrary for 0 ^ 0 < w . The right-hand side of (8) and 
therefore also u(0) can be made arbitrarily large unless g(0) —g(0+ir) 
= 0. This is the condition (2). 

If (2) is satisfied, (8) becomes u(0) ^ a , which is (1) with M= 1. 
We remark that (2) is certainly satisfied if the symmetry condition 

R(9 + TT) = R(d) 

holds. This means that the point 0 bisects each chord through it. 
This is true at the center of an ellipse, or of a parallelogram. In such 
a case we find that 

u(0) ^ max \[u(R{6), 6) + u(R(6 + TT), 0 + TT)]. 

We can now prove: 

THEOREM. If a bound of the form (1) for harmonic functions u holds 
at each point 0 of a convex domain D with smooth boundary G, then C is 
a circle. 

PROOF. We consider the chord PQ connecting any two boundary 
points P and Q. Let its length be d> and let O be the point on this 
chord at distance S from Ç. 

Let the chord make angles a and ]8, respectively, with the normals 
at P and Q. 

By hypothesis, (1) holds at 0. Hence by the lemma we have 

(d-d)2 dG 82 dG 
(9) ^ L —(0,P) = — — (0, 0 . 

cos a dn cos/3 dn 
We let 0 approach Q by making ô—>0. It is easily seen that 
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dG - 1 
( 0 , 0 = — cos iS + 0(1). 

on iro 

(The leading term comes from Green's function for the half-plane.) 
On the other hand, since (dG/dn)(0, P) = 0 for 0 on C, 

dG d2G 

— (o, p) = - coS jö——- (p, e) + O(Ô2). 
dw onpOUQ 

Dividing (9) by S and letting S—>0, we find 

d2G cos/? 1 
(-P, Q) 

ÔflpdflQ COS OJ 7T 

The function d2G/dnpdtiQ is symmetric in P and (). Letting S—>̂Z, 
we find the same equation with a and ]8 interchanged. Hence cos ce 
= cos jo. This is true for all P and Q on C Letting Q—>P on C and 
using the fact that j3 is a continuous function of Q, we find that 
ce = j8. 

An elementary exercise in differential geometry shows that ce = /3 
for all P and Q on C implies that C is a circle. This proves the theorem. 

REMARK. If we restrict our attention to non-negative u: 

u(R(0), 6) è 0, 

the inequality (8) does lead to a bound of the form (1) with the best 
possible constant 

M = 1 + f'maxi J k(9) - g(0 + T)], 
J o (.#(0 + *) 

— k(0 + x) -g(0)]}< 
i?(0) 

However, the evaluation of this constant requires rather detailed 
information about the kernel dG/dn, which is difficult to come by. 

In this case the maximum principle gives (1) with 

(R(0 + *•) 
M = 1 + max < 

o^2» I R(e) 
} 

which is just what one obtains by means of crude estimates for the 
Green's function in (10). 

The analogous results in n dimensions can be proved in the same 
manner. 
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In this note we present some results on various problems connected 
with ordinary differential equations which do not necessarily satisfy 
a uniqueness condition. Using the concept of an integral funnel we 
are able to generalize the classical theorem on continuity with respect 
to initial conditions. This then leads to a reformulation of the prob­
lem of classifying the solutions of a given differential equation. That 
is, it is shown that every continuous vector field f(x) on W gives rise 
to a bicontinuous injection of W into a space of functions H, and 
consequently the problem of classifying solutions is equivalent to the 
problem of characterizing this family of bicontinuous injections. A 
detailed discussion, with proofs, will appear later. 

1. Introduction. Let us consider the differential equation 

(1) * ' = ƒ ( * ) 

where ƒ is defined and continuous on some open, connected set W in 
Rn, real w-space. We shall let PF*= "FFWJco} denote the one-point 
compactification of W. There is then at least one solution <£(£, /) of 
(1) through every point p(E.W with 4>(p, 0)=p. Moreover, every 
solution is defined on some maximal interval Jp where either Jp = R1 

or <j>(p, t)—>{co} as t—^bdy Jp. I t should be noted that since the solu­
tions of (1) may not be unique, the interval Jp depends not only on p 

1 The research on this paper was supported in part by a grant from the U. S. 
Army Research Office (Durham). 


