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There are eight theorems contained in this note. Theorems 1 and 7 
are solutions of problems concerning fragments of the propositional 
calculus which were proposed by Tarski in 1946 at the Princeton 
Bicentennial. These problems were solved by Post and Linial2 in 1948. 
Theorems 2, 4-6 and 8 are solutions of a complex of problems pro­
posed by Post to Boone in the spring of 1948. Theorem 3 is the solu­
tion of a problem which was suggested to the writer as a natural con­
sequence of the proof of Theorem 2. The writer became acquainted 
with these problems of Post while working under the direction of 
Boone. The methods used in the detailed proofs of these theorems, 
which will be published at a later date, were inspired by M. K. 
Yntema's3 detailed and elegant proofs of the Post-Linial Theorems. 
Yntema's work was in turn suggested by an outline of the proofs 
given by Davis.4 The writer understands from Boone that other de­
tailed proofs of the Post-Linial Theorems will be forthcoming from 
Ronald Harrop and M. D. Gladstone. The proofs of these theorems 
are outlined here for completeness, because their machinery is an 
integral part of the proofs of the other theorems, and also because 
they differ somewhat from those of Yntema. All proofs of the present 
theorems are constructive. 

A partial propositional calculus is a system having ~ , D, [, and ] 
as primitive symbols along with propositional variables pi, qi, rit p2, 
<Z2, r2y • • • . Its well-formed formulas are (1) a propositional variable, 
(2) [̂ 4 2)5], where A and B are well-formed formulas, and (3) ^-4 
where A is a well-formed formula. It has a finite set of tautologies as 
axioms and its two rules of inference are modus ponens and substitu­
tion. If the restriction requiring all of the axioms to be tautologies 
be dropped, the resulting system will be called a generalized partial 
propositional calculus. 

A setni-Thue system5 is specified by a finite alphabet S and a finite 
set of word pairs U. 

1 Research partially supported by N.S.F. Grant No. GP-1568. 
«See [3]. 
8 See [4]. 
4 See [2, pp. 137-142]. 
5 There are two viewpoints possible concerning semi-Thue systems. The one given 

here was chosen because the rules more closely resemble the axioms of the generalized 
partial propositional calculi used. For the two formulations see [l] and [4]. These 
are easily shown to be equivalent as pointed out in [4]. 
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<8: ah a2> ' * * > an, 
U: Ai—*Bi, A2—+B2, • • • , Am-*Bm. 

A word is a finite string of symbols of 3 , w ^ h possible repetitions, 
which may be empty. ChD, where C and D are words on S shall 
mean there exists a finite sequence of statements &h.Di, C2hA&, 
• • • , CiY-Di such that Ci is Cand JPj is JD, and such that each state­

ment" C< hDi is justified by one of the following rules: 
1. H ChD, then AChAD; 
2. If C\-D, then C i h P i ; 
3. ChC; 
4. If C->JD, then C h P ; 
5. If ChE and E h A then ChD. 
It is well known6 that there exists a semi-Thue system on two 

letters which has an unsolvable word problem and no defining rela­
tion of which is of the form A-+B where either A or B is empty. 

THEOREM 1. There exists a partial propositional calculus with a recur­
sively unsolvable decision problem. 

Let er be a semi-Thue system with an unsolvable word problem 
defined by: 

Sal 1, », 
Ua: G{—>Zri, i = 1, 2, • • • , m 

where no G% or G< is the empty word. 
If W is a word of <r, then define W' to be the well-formed formula 

of the propositional calculus given by 

1' is r^j r^ \^p2 3 ~ P2] 

bf is **** ' ^ ' ^ ***> {f^pz Z) **** p2} 

(Viy is [V & 1'], and 

(Vb)'is [V'&V], 

where A & B is an abbreviation for ~[AZ)~B]. 
Now specify a partial propositional calculus7 ^p, by the following 

set of axioms. 
1. [pi&[q1&r1]]D[[p1&qi]&r1], 
2. [ k i & 2 l ] & r i ] D foi & [ & & * ] ] , 
3. [ f t O g i p . h & ̂ ] D [rx & 2 i ] , 

« See [2, p. 93]. 
1 This is the same system used by Yntema in [4] with the addition of axiom 8. 

Cf. [2]. 
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4. [ / 0 2 i ] D « l £ i & r i ] D [ s i & f i ] , 
5. piDpu 
6. G O G / , ; = l , 2, • • • , m, 
7. \piDqi]Du[qiDri]D\piDri], 
8. ~\piDpi]Dqi. 

Added in proof. Heavy dots, •, occurring in formulas should be 
interpreted to have the meaning assigned to them in Church's Intro­
duction to mathematical logic, p. 15. But the reader can, for all ex­
pressions used in the present note, get the effect of this convention 
simply by replacing each heavy dot by a left bracket and adding a 
corresponding right bracket at the end of the expression. We have 
also adopted the convention of omitting outer brackets. 

If X is a well-formed formula of $ , , then X is regular if (1) X is 1', 
or X is &', or (2) X is of the form [Xi & X 2 ] , where Xi and X2 are 
regular well-formed formulas. 

If X is regular, then (X) is the unique word of a obtained by the 
following procedure; (1) abbreviating X so that it contains only [, ], 
&, 1', and V', (2) removing all occurrences of [, ], and &, (3) replacing 
1' by 1, and V by &.8 

If W is a well-formed formula of *$<>, then W is valid9 if and only if 
W is of the form W1DW2 and (1) W\ is regular, W* is regular, and 
(Wi)htr(W2), or (2) Wi is not regular, and if Wi is valid then W2 is 
valid. 

I t can be proved that if X\-aWf then \-<$<rX'Z)W' and also that all 
theorems of $ , are valid and hence if X and W are regular and 
htyeXDW, then (X)\-C(W). From this we have Wih<rW2 if and only 
if h^WCDWI and consequently Ç, has a recursively unsolvable 
decision problem. 

DEFINITION (POST) . A well-formed formula Wof a partial proposi-
tional calculus $ is completely untrue with respect to $ if there is no 
substitution instance V of W such that F is a theorem of $ . 

THEOREM 2. For the partial propositional calculus ty* the problem to 
determine of an arbitrary wff W of ty* whether or not W is completely 
untrue with respect to $ , is recursively unsolvable. 

We shall write X = WA to mean that there is a regular wff PFand a 
wff A such that X is the result of substituting A for p% in W. We shall 
say that X is A-regular if X~ WA for some W. 

» Cf. [2; 4]. 
9 This definition differs slightly from Yntema's [4] and allows some simplification 

of the verification of the validity of the theorems. 
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If X is a wff of % X is A-valid if X is of the form XxDX* and (1) Xx 

= vf, X2= Ff and h^ViD V2, or (2) Xx is not .4-regular, and if Xt 

is -4 -valid then X2 is -4 -valid.10 

It can be proved that all theorems of $ , are A -valid and hence that 
\~VaViDVi if and only if Y-^ViDV* 

THEOREM 3. The problem to determine whether or not two partial 
propositional calculi have a theorem in common is recursively unsolvable. 

Let ty<r be the partial propositional calculus of Theorem 1. Let 
ty(Wi9 W2)* be the partial propositional calculus having the single 
axiom W1DW2, where W\ and W2 are regular wffs of ty*. Then $„ 
and ty(Wi, W2)* have a theorem in common if and only if r-$„ W O W2. 

DEFINITION. A partial propositional calculus $ is inconsistent in the 
sense of Post if a wff consisting of a propositional variable alone is a 
theorem of $. 

DEFINITION (POST). Wff W of a partial propositional calculus $ is 
/ a / ^ with respect to ^ if $ becomes inconsistent in the sense of Post 
upon the addition of W to the axioms of ty. 

THEOREM 4. For the partial propositional calculus ty<r the problem to 
determine of an arbitrary wff W of $ , whether or not W is false with 
respect to tyc is recursively unsolvable. 

It can be proved for the system $ , of Theorem 1 that [W1DPF2] 
3 [^[pO^i]]» where Wi and W2 are arbitrary regular wffs of tyc, is 
false with respect to tyff if and only if h^WiDW'2. 

THEOREM 5. The problem to determine of a generalized partial prop-
ositional calculus % whether or not % is inconsistent in the sense of 
Post is recursively unsolvable. 

Let Wi and W2 be arbitrary regular wffs of the system $ , of Theo­
rem 1, and let ^(Wlt W%) be % with the added axiom [WOWa] 
D[~ | i>0£ i ] ]* Then it is easily proved that ^(PFi, W2) is incon­
sistent in the sense of Post if and only if h ^ W O W2. 

DEFINITION (POST). Wff W is completely false with respect to a 
partial propositional calculus $ if for every substitution instance, F, 
of W, V is false with respect to $. 

THEOREM 6. For the partial propositional calculus $ , the problem to 
determine of an arbitrary wff W of tyff whether or not W is completely 
false with respect to *$<, is recursively unsolvable. 

10 This definition differs slightly from Yntema's [4] and allows some simplification 
of the verification of the A -validity of the theorems. 

file:///~VaViDVi
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It can be proved for the system $ , of Theorem 1 that if W\ and 
W% are arbitrary regular wffs of $ „ then [WOU^JD [~[i>0£i]] is 
completely false with respect to $* if and only if h^TTiDW^. 

DEFINITION (POST). Wff W of a partial propositional calculus $ is 
untrue with respect to ty if W is not a theorem of $. 

DEFINITION (POST). A partial propositional calculus $ is closed if 
upon the addition of any untrue wff to the axioms of $, $ becomes 
inconsistent in the sense of Post. 

THEOREM 7. The problem to determine of an arbitrary partial proposi­
tional calculus % whether or not % is closed is recursively unsolvable. 

Let Wi and W2 be arbitrary regular wffs of the system $ , of Theo­
rem 1. Let ^(PFi, W2)' be the system obtained by adding the follow­
ing wffs to the axioms of ^ 

[WiDWt]DmPiD[qiDPi], 

[Wx D W2] Dm [pi D [qi D n]] Dm [pi D qi] D [pi D n], 

[Wi D W2] Dm [~«i D ~ Pi] D [pi D ?J. 

Then it can be proved that ^(PFi, W2)
r is closed if and only if 

t-V<rWiDW2. 
DEFINITION (POST). A partial propositional calculus $ is completely 

closed if ^ becomes inconsistent in the sense of Post upon the addition 
of any completely untrue wff to the axioms of $. 

THEOREM 8. The problem to determine of an arbitrary partial proposi­
tional calculus ^ whether or not $ is completely closed is recursively un­
solvable. 

It can be shown that a system $(Wi, W2)' of Theorem 7 is com­
pletely closed if and only if it is closed. 
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