
854 J. M. KISTER [November 

2. W. Benz, Ueber Möbiusebenen. Ein Bericht. Jber. Deutsch. Math.-Verein. 63 
(1960), 1-27. 

3. P. Dembowski and A. Wagner, Some characterizations of finite projective spaces, 
Arch. Math. 11 (1960), 465-469. 

4. G. Ewald, Beispiel einer Möbiusebene mit nichtisomorphen affinen Unterebenen, 
Arch. Math. 11 (1960), 146-150. 

5. A. J. Hoffman, Chains in the projective line, Duke Math. J. 18 (1951), 827-830. 
6. D. R. Hughes, Combinatorial analysis, t-designs and permutation groups, 1960 

Institute on Finite Groups, Proc. Sympos. Pure Math. Vol. 6, pp. 39-41, Amer. 
Math. Soc, Providence, R. I., 1962. 

7. B. Qvist, Some remarks concerning curves of the second degree in a finite plane, 
Ann. Acad. Sci. Fenn. 134 (1952). 

8. B. Segre, On complete caps and ovaloids in three-dimensional Galois spaces of 
characteristic two, Acta Arith. 5 (1959), 315-332. 

9. J. Tits, Ovoïdes à translations, Rend. Mat. e Appl. 21 (1962), 37-59. 
10. , Ovoïdes et groupes de Suzuki, Arch. Math. 13 (1962), 187-198. 
11. B. L. van der Waerden und L. J. Smid, Eine Axiomatik der Kr eisgeometrie 

und der Laguerregeometrie, Math. Ann. 110 (1935), 753-776. 
12. A. Winternitz, Zur Begründung der projektiven Geometric Einführung idealer 

Elemente, unabhangig von der Anordnung, Ann. of Math. (2) 41 (1940), 365-390. 

UNIVERSITXT FRANKFURT AM MAIN AND 
QUEEN MARY COLLEGE, LONDON 

MICROBUNDLES ARE FIBRE BUNDLES1 

BY J. M. KISTER 

Communicated by Deane Montgomery, June 10, 1963 

Introduction, In [ l] , Milnor develops a theory for structures, 
known as microbundles which generalize vector bundles. It is shown 
there that this is a proper generalization; that some microbundles 
cannot be derived from any vector bundle. It is then possible, for 
instance, to find a substitute (tangent microbundle) for the tangent 
bundle over a manifold M even though M admits no differential 
structure. 

A well-known and more general class of structures than vector 
bundles (but less general than microbundles) is the class of fibre 
bundles with a Euclidean fibre and structural group the origin-
preserving homeomorphisms of Euclidean space topologized by the 
compact-open topology (cf. [2]). In this note such structures will be 

1 This work was supported by a grant from the Institute for Advanced Study and 
by NSF grant G-24156. 
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denoted simply as bundles. 
Briefly then, our main result is that every microbundle over a com­

plex is isomorphic to a bundle, in fact it contains a bundle and that 
this bundle is unique. The same result for microbundles over mani­
folds and, more generally, ANR's in Euclidean space follows easily. 
In the case of the tangent microbundle over a topological manifold 
M this means that for each point x in M there is selected a neighbor­
hood Ux which is homeomorphic to Euclidean space and U« varies 
continuously with x. In the case of a differentiable manifold this 
selection is accomplished by means of a Riemannian metric. I t was 
the absence of such a selection, however, that provided impetus to 
the consideration of microbundles (cf. Introduction in [ l ] ) . 

I wish to express my gratitude to D. R. McMillan for several 
profitable conversations. 

Statement of results. Let Rl denote /-dimensional Euclidean space 
and g the space of all imbeddings of Rl into Rl provided with the 
compact-open topology. Let go be the origin-preserving elements of 
g, 3C those elements of g whose images are R\ and 5Co = gon5C. 

A microbundle X, having fibre dimension I, B—»*'£—*''B, admits a 
bundle providing there is an open set £1 in E containing the 0-section 
i(B) such that j \ E\\ Ei—>B is a fibre bundle with fibre Rl and struc­
tural group 3C0. The fibre bundle in this case will be called an admis­
sible bundle. 

Let Tn be the statement that every microbundle over a locally-
finite w-dimensional complex admits a bundle. Let Un be the state­
ment that any two admissible bundles for the same microbundle over 
a locally-finite w-dimensional complex are isomorphic. An isomor­
phism in this case is a homeomorphism between the total spaces pre­
serving fibres and which is the identity on the 0-section. 

THEOREM. Tn and Un are true for all n. 

The proof will be sketched, with details appearing in a later paper. 
To and Uo follow immediately from the fact that microbundles over 
a O-dimensional set are all trivial. We finish the proof by showing 

(1) r n _i and Z7n-i imply Tni and 
(2) Tn implies £/n. 
The following lemma is used repeatedly. 

LEMMA. There is a map F: goX/—>go such that 
(a) F(g, 0 )=g , allgeSo, 
(b) F(g, DGSCo, allgESo, 
(c) F(h, *)G3Co, all AG5C0, tEI. 
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The proof for the Lemma consists of analyzing the isotopy, which 
is relatively easy to produce, taking a single element in 9o into 3Co and 
expressing the process in a canonical fashion. Then one has to verify 
that this process yields nearby isotopies if the elements in g o are close 
in the compact-open topology. The full verification is long and some­
what tedious and is therefore suppressed here. 

We return to the proof of (1). Let X be a microbundle over a 
locally-finite ^-complex K with diagram: K-~»*£—>J'K. For each n-
simplex a in K we find an admissible trivial bundle £, for X\ cr. Next 
let D be an open set in £ containing i{K) such that j~l(a)fM>C£(&) 
the total space of £,. Let Kn~l denote the (n — 1)-skeleton of K and F 
the microbundle Kn~'l~+i,j-l(Kn-l)r\D--*j,Kn-1, where i' and ƒ are 
the restrictions of i and j . By r n_i , Y admits a bundle rç, and by the 
choice of D, for each point z in da, the rç-fibre over z is contained in 
the £<r-fibre over z. rj\da and %<r\da are admissible bundles for X\d<r 
and since the second is trivial, by £/n-i it follows that 771 âcr is trivial 
also. This permits us to coordinatize both the ^-fibres and ^-fibres 
over da. The inclusion of the former in the latter determines a map 
of da into 9o which by the Lemma can be deformed into a map of 
da into 3Co. If a\ is a smaller concentric simplex in a we may regard 
this deformation as assigning elements in 9o to points in <r-int a\ so 
that the elements assigned to points in da\ are all in 3Co. This cor­
respondence permits us to smooth the fibres in going from the t\-
fibres over da to the ^-fibres over 0*1. By repeating this process on each 
w-simplex a the bundle rj over Kn~l can be extended to a bundle over 
K. 

To prove (2) let 0*1» 0*2» * * " » 0"a} * * be a well-ordering of those 
simplexes in the w-complex K which are not faces of some higher 
dimensional simplex in K. Let £1 and £2 be two admissible bundles 
for X, a microbundle over K. By Tn there is no loss in generality in 
assuming £(£1) C-Ë&). Let /o: £(£1)—»-E&) be the inclusion. Let 
N(aa) be the closed star neighborhood of aa in the second barycentric 
subdivision. Let Ka^lip^a ap, a subcomplex. 

Suppose for each &<a we have defined ƒ#: £(£1)—»£(£2), an imbed­
ding, taking fibres into fibres, and ƒ3 is the identity on i(K). Suppose 
further that fp\ Kp is an isomorphism from £i| Kp onto f2| Kp and that 
for each point p in £(£1) —j~l(N(ap)) there is a 7 <]8 and a neighbor­
hood N of p such tha t fp\N=fp>\N for y £&'£&. We construct ƒ« 
satisfying these properties. 

Let ga: £(£1)—»£&) be ƒ«_! if a— 1 exists. Otherwise ga = limits^afp, 
which exists since each point in K lies in only finitely-many N(ap). 
Then ga(£(£i)) is the total space of a bundle rja in a natural way. Since 
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N(<ra) is contractible rja\ N(<Ta) and %2\N(<ra) are trivial. This allows 
us to coordinatize the two sets of fibres and the inclusion of the 
^-fibres in the ^2-fibres assigns an element gz in 9o to every z in N(<Ta). 
Let t: K—>I be a map such that t(aa) — 1 and t(K — N(aa)) = 0. Using 
the Lemma we associate with each z in N(<xa) the imbedding 
hz=F(gz, t{z)). Then for each z in <ra, hz is in 3C0, and for z in 
Cl(K — N((ra))r\N((ra), hz = gz. If we define a homeomorphism ha from 
E(rja) to E(£2) by taking the ^«-fibre over z into the ^2-fibre over z 
according to hz, for each z in iVXO and using the inclusion elsewhere, 
then fa = haga satisfies the desired properties of the induction. 

The isomorphism from £1 onto £2 is the limit of the ƒ«. This proves 
(2) and finishes the proof of the Theorem. 

COROLLARY 1. If Bis a neighborhood retract in some Euclidean space, 
for example a manifold, then any microbundle over B admits a unique 
bundle. 

PROOF. Let B be a subset of Rn and V an open set in Rn containing 
B and p: V—>B, a retraction. Then if X is a microbundle over B, 
p*(X) may be regarded as an extension of X to all of V. But V can be 
triangulated and the Theorem applied to give both the existence and 
uniqueness. 

Let 3Q,£(n) be the orientation-preserving, origin-preserving homeo-
morphisms of Rn onto Rn. As a consequence of the Theorem and the 
fact that koSs—>ktoï>Ss is not an isomorphism [ l ] , we have: 

COROLLARY 2. For large enough n, the homomorphism iriiSOtti)) 
—»7T7(3Co"(ft)) induced by inclusion is not an isomorphism. 

Added in proof. The author has learned that B. M azur has obtained 
independently a somewhat different proof of the Theorem. 
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