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1. Introduction. Although axisymmetric potential theory is a well-
developed subject with many applications to the physical sciences it 
is, perhaps, not fully appreciated that certain biological problems 
suggest the use of this theory. In particular the problem of steady-
state diffusional flow through a cylindrical structure arises frequently. 
Not surprisingly, the physiological situation may provide motivation 
for solving problems and seeking techniques that are different from 
those arising from purely mathematical or physical considerations. 
In this paper, which will be reported in full elsewhere, we describe one 
such problem and outline its resolution. 

2. Formulation and solution. The system (1) given below can be 
regarded as a model for water loss through a plant pore into dry air 
surrounding the plant. In this model water vapor is the solute and 
air is the solvent. Let (r, 0, x) be cylindrical coordinates. Let a > 0 and 
1^0 be constants and put X = / /a. Put i ? J = { 0 < r < a ; ~ Z < ^ < 0 } , 
2 $ = { 0 < r < a ; x = 0} and R^ {r>0; x>0} and R° = R^R^UR*. 
Let G(r) be a given function such that rG2(r) is Lebesgue integrable 
on O ^ r ^ a . We seek u(r, x) from the system (1) of equations (n de­
notes outward drawn normal) : 

d2u d2u du 

( l a ) r + r + = 0 , (>-,*)£*<», 
dx2 dr* dr 

(lb) lim f \u{r, - / + « ) - G(r)Yrdr - 0, 

(lc) u(r, x) = 0, x > 0 and r + x = oo, 

r = 0 and x > — /, 
du 

(ld) — = 0, r = a and -I < x < 0, 
dn 

r > a and x = 0. 
If ak denotes the feth positive root of J\(r) we write the corresponding 
Dini expansion of G(r) as G(r)~^T,£ o&clo(w/tf0 where Soiaor/a) 

1 This work was supported in part by the Office of Naval Research, U. S. Navy, 
under contract Nonr 595(17). 
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= V2 and 3o((Xkr/a)==\/(2)Jo(akr/a)/Jo(ak) when & = 1, 2, • • • . We 
denote by 5ft the Hilbert space of column vectors {r„: » = 0, 1, • • • } 
with square summable components and set (r, 3) = Ylo xn§n and 
(r, r)1 / 2 = ||r||. We seek a solution w of (1) and {G9Î such that u(r, 0~) 

lî 1 = 0 and G = G0 is a constant, system (1) reduces to Weber's 
problem of the electrified disk for which it is known that the surfaces 
of equipotential are oblate spheroids. Therefore in R% we introduce 
oblate spheroidal coordinates (17, cj>) given by # = sinh rj cos 4> and 
r = cosh rj sin </>. Separating variables in Rl then suggests seeking p £ 9 t 
such that u(r, 0+)~X)o*° Pn(P2n(M) where /z= ( l - r 2 ) 1 ' 2 and (PanO*) 
= (4W + 1)1 / 2P2M(M)- Thus we are able to write down the formal solu­
tion of the problem in terms of \ and p : 

u(r, x) = Ho + Go - Bo) —J 3o(a0r/a) 

(2a) " / in sinh (an(l + x)/a) - gw sinh (an*A) \ 
+ 2 -4 . . , XN )âo(anr/a)} 

n-1 \ Sinh(û!nX) / 

(r, *) G JRÎ, 

<A Ö2n(i sinh ?;) 0 
(2b) U(rf, 4>) = 2 ^ Pn(P2n(C0S 0) — — , (f, 0?) G # 3 , 

n~0 Ö2»(0) 
where (?2n is a Legendre function of the second kind. Setting u(r, 0"") 
= w(r, 0+) and employing the orthogonal property of the Legendre 
polynomials yields (in 9Î) a linear algebraic equation $ = B\ where 
B= {bkn: k, n = 0f 1, • • • } is a known infinite matrix. Setting ux(rt 0+) 
= ux(r, Or) and employing the orthogonality property of the Bessel 
functions gives a second equation i = ^4p+5g where A and S are 
known. Setting C = AB gives the equation (I— C)i = 5g for the un­
known j . This equation is not symmetric. Symmetrizing it gives the 
system \=A~1îy (I—D)î= T$ where dkk = 0 and 

t 2 tanh ak\ / sin 2ak \1 ~~1 

1 + ZT-T-l 1 + — ) , t = l , 2 , . . . , 
TrOLkJo^OLk) \ l0tk / J 

2 / 4XTn \ 1 / 2 

«on = r-1 ) —;—;—r ' » = 1, 2, 

dfcn = 

2 / 4XTn \ 1 / 2 s inan 

V A T T + 4 X / aVVo(an) 
n 

2(Y*Yn)1/2 rsin(a* + an) t sin(ak — an) ' r s infe + OJW) sin(aA — <xn) 1 

(an) L ak + an ak — an J ' Tr(akan)
1/2Jo(ak)J0(oin) I 

£, w = 1, 2, • • • ; k 7e n, 

and where A and T are diagonal matrices such that Xoo 
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= (X-i(l + (4X)/TT))1/2 , X** = al/2/yl/2 (k « 1, 2, • • • ) and *0o 
- (X( l + (4X)/x))-w«f 

1/2 T 2 tanh â X / sin 2ak \ 1 _ 1 

L ira*7?(ajb) \ 2aA / J 

To calculate ||Z?||, i.e. the least number M such that ||25r|| ^-W||r|| 
for r £ 9 t , we compare the bilinear form induced by D to the bilinear 
form induced by the Hubert matrix i f = {(fe+w + l)""1:fe,^ = 0,1 , • • •} 
for which it is known that ||H"|| =7T. Direct computation of the bounds 
for the first 49 elements in D and asymptotic estimates on the re­
maining elements show that \\D\\ < 0.638 (0 ^ X < 00). Thus 
ï = X)ô° DnT§ and whence j , p and u are known. With { and p thus 
chosen (2a) and (2b) give a solution harmonic in R^^JR^ and satisfy­
ing the required boundary conditions. Regularity on R% is established 
by showing, mainly using contour integration, that u is a weak solu­
tion in R° and then applying Weyl's lemma. From the fact that I-~D 
has a unique inverse it follows that u is unique. 

3. Discussion. In physiology interest is centered on the flux, in this 
case 

ƒ•a r ̂  irdr 

— 

where K is the diffusion constant, rather than the concentration. 
Further one is often interested in distinguishing between "active" 
and "passive" transport whence it is desirable that any formulas 
derived yield an approximation to F, say F, such that the relative 
error, \F — F\/F, is small. The most important case biologically is 
G = G0, e.g. in the case of the plant pore G0 is the concentration of 
saturated water vapor in air. For this case (2a) yields the approxima­
tion 

0.0449 1 
1 - , 

4X 
1+ — 

TC J 

which gives F with a relative error of less than 5 % (0^X<oo) and 
for the range X>3.1 a relative error less than 1%. 

I t is conjectured that the technique outlined above will be useful 
in obtaining explicit solutions for other axisymmetric potential prob­
lems characterized as follows: the region in question is the union of 
two regions in each of which the Laplacian is separable. For these 
two subregions formal solutions can be written in terms of eigenfunc-

4iCG0a 

4X 
1+ — 

T I 
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tions appropriate for the regions with the coefficients in the expan­
sions being the unknowns. Algebraic equations in 9î for these coeffi­
cients are derived by equating the solutions for the two subregions 
and their normal derivatives on the interface between the regions. 

The two regions can arise from functional as well as geometric 
considerations. Thus, consider the potential of a cylinder, say 
{ 0 < f < l ; 0 < x < l } wherew = 0on { r = l ; 0 < x < l / 2 } anddu/dr^O 
on {r = 1; 1/2 < x < l } , and u = 1 on {0 < r < 1; x = 0} and 
{ 0 < r < l ; # = l } . In this case the two regions would be {0<r< 1 ; 
0 < * < l / 2 } and { 0 < r < l ; l / 2 < * < l } . 

UNIVERSITY OF MARYLAND 

ON LOCAL DIFFEOMORPHISMS ABOUT AN 
ELEMENTARY FIXED POINT 

BY KUO-TSAI CHEN1 

Communicated by Deane Montgomery, July 6, 1963 

Let Rn be the real w-space with O as the origin. Let G be the group 
of the germs of C00 local diffeomorphisms about O as a fixed point. 
We say that T, T 'ÇG are equivalent if they are conjugate in the 
group G. Denote by ® the natural homomorphism from the group 
G onto the group ® of the oo-jets at 0. The fixed point 0 of TG G 
will be said to be elementary if the Jacobian J(T) has no eigenvalue 
of absolute value equal to 1. 

Let A be the Lie algebra (over R) of the germs of C00 local vector 
fields about 0 and vanishing at 0. We also use © to denote the 
natural homomorphism of the Lie algebra A onto the Lie algebra 21 
of the oo-jets. 

THEOREM 1. Let the fixed point 0 of C/GG be elementary. Then U is 
equivalent to T—<prj, 0, rjÇîG, such that 

(a) <f> is a nonsingular semisimple {i.e., diagonalizable over the field 
of the complex numbers) linear transformation of Rn, 

(b) J(rj) is equal to the identity mapping of Rn plus a nilpotent linear 
tranformation, 

(C) 077 = 7/0. 

1 This work has been partially supported by the National Science Foundation 
under Grant NSF-GP-481. 


