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1. Let {X;:i=1, 2, } be a sequence of independent and
identically distributed random variables and let S,= 2 7., X Re-
cently a number of papers [1], [2], [3] and [5] have considered the
problem of relating the existence of moments of the X}'s with the
convergence of series of the form o, n*?P{|S,—ES,|>ne},
where t=1 and €>0.

The purpose of this note is to present results that extend, strengthen

and complete the previous work done on this problem.

2. It is known that for t=1 one has E| X|*< ® and EX,=p if
and only if D> o, nt—zP{ ] S,.-—nu] >ne} for all €>0. Since t=1, this
theorem concerns sequences of independent and identically dis-
tributed random variables for which the Strong Law of Large Num-
bers holds and thus it is natural to study the rate of convergence to
zero of the sequence {P[supizs |(Si—ESi)/k|>¢€], n=1,2, -}
as well as the sequence {P[IS,.—ES,.[ >nel, n=1, 2, - - - } The
determination of the rate of convergence to zero of the first sequence
is completely solved by the following two theorems. In everything to
follow {Xi:k=1, 2, - - -} will denote a sequence of independent
and identically distributed random variables.

THEOREM 1. Let t> 1. The following three statements are equivalent:
(a) E|Xi|t< ® and EXi=p,

(b) D, nt2P IS,,-—np,l >ne} < o for all €>0,

(€ Domint2P{supisa l (Sk—ku)/kl >e} < for all €>0.

Note that in this theorem ¢ is greater than one. For ¢=1 it is true
that (a) and (b) are equivalent, however, (c) is not implied by either
of these conditions. For £=1 in (c) of the above theorem the correct
equivalent conditions are given by the next theorem.

THEOREM 2. The following three statements are equivalent:
(@) E|Xi|lgt| Xi| < » and EXi=p,

() Yor, ntign P{|S,—nu| >ne} < for all €>0,

(©) Do, n'P{supizn | (Sk—-kp,)/k] >e} <o for all €>0.

The next two theorems determine rates of convergence when the
sums S, are normed by n%, «>1/2, and when the first moment may
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not exist but E| X;| < o for 0<t<1. In particular, Theorem 1 is a
special case of Theorem 3 but it has been singled out since it is the
“classical” and most interesting case.

THEOREM 3. Let t21, r>1 and 1/2<r/t=1. The following three
statements are equivalent:

(a) E Xk|‘<oo and EXy=p,

(b) oy NP lS,,—nu[ >n’“e} < ® for all €>0,

(©) Doy 2P {supizn | (Si—ku)/kt| >e} < o for all €>0.

THuEOREM 4. Let t>0, r>1, and r/t>1. The following three state-
ments are equivalent:

(a) E Xkl t< oo ’

(1) Doy 2P| Sa| <nlte} < 0 for all €>0,

(€) Doy 2P {Supian | S/kt| > €} < o for all €>0.

Finally we wish to comment that the proofs of the known results
in this area can be considerably simplified and unified. In particular,
it is not necessary to give a special proof for the result in [5] that
EX)=u if and only if D ;o #2P{| S, —nu| <ne} < for all €>0.

These details as well as the proofs of the above theorems will ap-
pear elsewhere.
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