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1. Introduction. I t is well known that a transformation T which 
preserves a finite measure has the mixing property 

(1.1) r<*> = TXTX - • • XT(k times, k^2) is ergodic 

if and only if T is weakly mixing [ l ] . 

The purpose of this note is to give, for each positive integer k> an 
example of a transformation T which preserves a <7-finite infinite 
measure with the property, 

(1.2) T^h) is ergodic but T(k+1) is not ergodic. 

We also give an example of a transformation T which preserves a 
c-finite infinite measure with the property 

(1.3) T'<*) is ergodic for each k = 1, 2, • • • . 

A transformation T with property (1.2) is said to have ergodic 
index k and a transformation T with property (1.3) is said to have 
infinite ergodic index. For completeness, we say that a nonergodic 
transformation has zero ergodic index. 

Thus, for each k = Q, 1, 2, • • • ,<*>, infinite measure preserving 
transformations exist with ergodic index k, unlike finite measure 
preserving transformations which assume ergodic indices 0, 1, oo 
only. 

The examples are taken from Gillis [2], and are Markov trans­
formations derived from "centrally biased random-walks." 

2. Markov transformations preserving a cr-finite infinite measure. 
Let 

P = \\p(iJ)\\, i,J = 0, ± 1 , ± 2 , . . . 

be a stochastic matrix with only one ergodic class, i.e., 
00 

y=-oo 

and for each (i, j) there exists n>0 for which pn(i, j)>0 where 
Pn = \\pn(i, j)\\. Assume also that there exists a left eigenvector 
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A = {X(i)} (with eigenvalue one) with positive entries such that 

£ X(0 = oo. 

Let Z be the set of all integers and let 
00 

X = I I Zh Z< = Z, i = 0, ± 1, • • • . 
i=—oo 

A generic element of X is a point 

X = { Zi(x) } . 

A cylinder of X is a set of the form 

Cm,n(x) = {y G X: Zi(%) = Zi(y)9 m ^ i ^ n}. 

Let (B be the Borel field generated by the cylinders of X and let p 
be the (7-finite measure generated by the cylinder function 

n-1 

pCm,n(x) = *(*»(*)) I I P(*i(*)> **+i(*))-

It is clear that the measure p is invariant under the shift transforma­
tion r , 

T{zi] = {*/}, *ƒ = 8*4.1, 

and * = \JZ.-„Xi, p(Xi)=\(i), p(X)=*>, where *< = {xEX: 

We refer to (X, (B, £, P) as the c-finite stationary Markov chain 
defined by P . T is the Markov transformation defined by P . 

We shall be interested in the following conditions on P: 
I*. For every i\, • • • , iu\ji • • • j/b there exists w>0 such that 

Pn(ii,ji) X • • • Xpn(ik,jk) > 0. 

II*. E n ^ l t r (0,0) ]*==«>. 

THEOREM. P satisfies I* a t ó II* if awd *mZ;y i / /A# Markov trans-
formation T defined by P satisfies: T(k) is ergodic with respect to pw 

= £ X • • • Xp (k times). 

The above theorem can be deduced from a similar theorem in [3]. 
We indicate below the main points of the proof. 

The theorem need only be proved for the case k = l. In fact, if 

R(h, • • • , ik) = Xh X • • • X Xi» 

then condition I& states that 
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(2.1) x-»(*o • • • \-K*k)pw[R(ii - - • H)r\ (r»>)-iî(/i • • -h)] > o 

for some w>0. Condition II* states that 

(2.2) J2 [H0)]-*p<»[R(f), • • • , 0) H (TW)-»R(0, • • •, 0)] = « . 
n-1 

The ^-dimensional direct product (X(A;), (B(*°, £(A°, r(Â0) of the system 
(X, (B, ƒ>, T) can be regarded as 1-dimensional by relabelling the k-
vector states (ii, • • • , 4) with integers. After relabelling, in view of 
(2.1) and (2.2) conditions Ik and II& become Ii and Hi. 

If Ii is not satisfied then for some (i,j),pn(i,j) = \-l(i)p{Xir\T-nX3) 
= 0 for all n > 0 and T is not ergodic. 

If Hi is not satisfied then 
00 

Z#"(0,0) < oo, 
n=l 

the state X0 is not recurrent [4], and T is not ergodic since a wander­
ing set of positive measure exists [l] . 

Suppose Ii and Hi are satisfied, then almost all points of Xo return 
infinitely often to Xo under both positive and negative iterations of 
T and the smallest invariant set containing Xo is essentially the 
whole space X (cf. [4, §4]). 

The remainder of the proof can be completed by showing that the 
transformation induced by T on Xo [S], is a Bernoulli transforma­
tion. The ergodicity of T then follows from the ergodicity of the in­
duced transformation [5]. 

3. Examples. Let — K e < l , and define 

e = lk(M)ll, i = o, ±i, ± 2 , . . . 

where q(i, i+1) = ( l -e /*) /2 , q(h i-l) = (l+e/t)/2, *V0, q(0, 1) 
= 2(0, — 1) = 1/2, and q(i, j) = 0 if j V i + 1 a n d j V i - l . 

Let M= {rn(i)}, i = 0, ± 1 , • • • , where 

T(l + e)iT(i - €) 
m(0) = 1, m(i) = tn( — i) = ; i > 0. 

T(l - e)T(i + 1 + c) 
One can easily verify that 

MQ = M. 

Let <22 = lk2(̂ ", i)H and put 

P = \\p(hj)l i , i = 0, ±2, ±4, . . . , 
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where p(i,j) =q2(i,j).Let A = {\(i)},i = 0, ±2, ±4,whereX(i) =m(i). 
Then AP=A and p(i, j) =0 if and only if J9éi — 2f j^i and J9éi+2. 
P satisfies condition I& for every >fe = 1, 2, • • • . (No difficulties arise 
from considering matrices P defined over the lattice of pairs of even 
integers.) 

Moreover, 
^ 1 

since 
r(i + e) 
r(i - e) 

We shall need the following result of Gillis [2]. 

LEMMA. For any 0>O there exists Ki = Ki(9) such that for aV N, 

KriNt-W-e < g2JV(0> o) = ps(0f 0) < KiN*-1'™. 

Choose a positive integer k and t\ > 0 such that 

k l + k' 

Choose e such that 

1 1 1 l+v 
< e < 

2 k 2 l + k 
and 6 > 0 such that 

. / 1 1 1 1 + V\ 
0 < min le > e J ; 

\ 2 k 2 l + k/ 
then 

1 1 1 1+17 
<e 6 <e + 0 < 

k 2 2 l + k 

Consequently, by the lemma, there exists Ki=Ki(6) such that 

KtN-1'* < KiN*-1'2-» < pN(0, 0) < K1N
t~1ii+> < jr^-a+iwa+M 

i.e., 

(PN(0, 0))*+1 < (Kiy+iN-v+rt 

and 
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(^(0, 0))* > (K&N-1. 

Hence, by the theorem, the Markov transformation defined by P 
has ergodic index k. 

Finally, if e = l/2, then again by the lemma 

Z [Pn(0, 0)]* = « for k = 1, 2, • • • , 
n=l 

and consequently the Markov transformation defined by P has in­
finite ergodic index. 
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