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There are various fiber bundles known whose total spaces are 
spheres. Examples are the Hopf maps S3—»S2, S7—»S4, S1B—>58 and 
and fiberings over projective spaces. I t is an open question whether 
these are all the fiberings of spheres with connected fibers. 

Spanier and Whitehead [ó] showed that in such a fibering the fiber 
must be an iî-space. The results of Borel [2 ; 3 ] showed that the fiber 
is a rational homology sphere. 

THEOREM 1. Let p: Sn—>B be a fiber bundle map onto a polyhedron 
B, with fiber F a connected polyhedron. Then F is the homotopy type of 
S\ S3 or S7. 

The proof depends on studying the torsion of H*(F), in particular 
the 2-torsion. 

THEOREM 2. Let X be an H-space, connected, with Hi(X) finitely 
generated for all i, zero f or large i. Suppose in addition that X is a ra­
tional homology sphere, i.e., H*(X; Q)Ç=H*(Sn; Q) for some n. If 
H1(X;Z2) = 0,then 

£T*(X; Z2) = A(x) <g> Z2[Sqlx}/{Sq1xy\ 0 g q < oo, 

dim x is odd, > 1 . 
If Hl{X; Z2) 5*0, then i f*(X; Z2) - Z 2 [ x ] / ^ f l , 1 ^q< oo, dim * = 1. 

Since F satisfies the hypothesis of Theorem 2, we may apply it to 
this situation. A spectral sequence argument using Theorem 2, sim­
ilar to Borel's argument [3, p. 165], yields the result that H*(F; Z2) 
=A(x), i.e., F is a mod 2 homology sphere. Namely, Theorem 2 
shows that H*(F\ Z2) has a simple system of transgressive generators, 
and employing a theorem of Borel [3, Proposition 16.1], we get that 
H*(B\ Z2) is a polynomial ring on the "transgressions" of the gener­
ators, in dimensions <n. But now, analyzing the structure of the 
spectral sequence, we cannot arrive at E00=H*(Sn; Z2), unless 
H*(F; Z2) has only one generator; i.e., H*(F; Z2)=A(x). 

Adams [ l ] has shown that a mod 2 homology sphere which is an 
iT-space is a 1, 3, or 7 dimensional mod 2 homology sphere, hence a 
rational homology 1, 3, or 7 sphere. I t is then easy to show that an 
H-space which is a rational homology 1, 3, or 7 sphere has no odd tor-
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sion. Hence F is an integral homology sphere, and it follows that F 
is the homotopy type of a 1, 3, or 7 sphere. 

Theorem 2 may also be applied to studying the cohomology of the 
"projective plane" of an iî-space X, if X is a rational homology 
sphere. By studying the Steenrod squares in this space one can show 
that if Sq^^O then dim x= 1, from which one can deduce the follow­
ing: 

THEOREM 3. Let X be an H-space, connected, with Hi(X) finitely 
generated for all i, zero for large i, and suppose X is a rational homology 
sphere, i.e., H*(X; Q)^H*(Sn; Q),for some n. Then X is the singular 
homotopy type of one of the following: Sl, S3, S7, P8 , or P7, (Pi — real 
projective space of dimension i). 

The proofs of these theorems will be found in [4], In addition, the 
proof of Theorem 2 relies heavily on some general results on differen­
tial Hopf algebras from [S], 
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