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In this note we consider piecewise linear mappings of combinatorial 
manifolds into the real line. We define—in a purely combinatorial 
way—a certain class of mappings called nondegenerate and we prove 
that every continuous mapping may be approximated by a nonde­
generate one. Nondegenerate mappings on a combinatorial manifold 
behave like differentiable nondegenerate mappings on a differentiate 
manifold. In particular, the index of a singularity can be defined and 
one can prove the Morse inequalities and an analogue of the Reeb 
theorem about a function with only two nondegenerate singularities. 

The approximation theorem can also be extended to height func­
tions on combinatorial submanifolds of Euclidean space. 

Detailed proofs will be published later. We give here descriptions 
of the singularities, a statement of the main theorems and a very 
brief sketch of the approximation theorem. 

1. En will denote ^-dimensional Euclidean space. By a complex 
we shall understand a rectilinear, locally finite simplicial complex in 
Euclidean space. A closed subspace MC.En will be said to be a mani­
fold if M is a space of a complex K which is a connected combinatorial 
manifold in the sense of M.H.A. Newman and J. W. Alexander (see 
[ l ] ) . We will then say that K is a triangulation of M. The boundary 
M of M will be the subset of M covered by the mod 2 boundary of 
its triangulation; if M== 0 we will say that M is unbounded, a com­
pact and unbounded manifold will be said to be closed. 

Let U, V be open subsets of a manifold M and let ƒ : V—>Mi be a 
continuous mapping of V into a manifold Mi. We say that ƒ is piece-
wise linear (shortly: PL) in U if there exist triangulations K of M 
and K\ of M\ such that for every simplex A of K intersecting Z7, 
ƒ maps &C\ V linearly into a simplex of K\. If U-=V~ M we will say 
that ƒ is a PL mapping of M. If pG VCM and ƒ: V-»Mi is PL in a 
certain neighborhood of p then we will say that ƒ is PL at p. 

Let f il Mi-*Ek be two PL-mappings, and let piGMi, i = l, 2. We 
say that / i a t pi is equivalent to /2 a t pi if there exist neighborhoods 
Ui of p^ i = l, 2 and homeomorphisms h: Ek—*Ek, g: U\—»U2 such that 
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(a) g is PL at ph g(pi) = £2; 
(b) h is PL a t / 2 (£ 2 ) , h is orientation preserving; 
(c) hfi(x) ==/2g(x) for x& Ui. 
We write then fi\p«/2| q. 
By a special w-cell <2n we will understand the convex hull of the set 

of points a*=(a,i, • • • , ö i B)GE n , i = l, • • • , 2«, where aa~h{ for 
i = 1, • • • , n, j — 1, • • • , n and a»-y= — h{_n for i — n + l, • • • , 2^, 
j = l, • • • , n. By a special (w—1)-sphere 5 n _ 1 we will understand 
the boundary of Qn. I t is easy to see that the points ai, i— 1, • • • , 2n 
triangulate Sn~x and that the same set of points with the addition of 
#o= (0, • • • , 0) triangulates Qn. We will refer to these triangulations 
as the standard ones. 

By a: En—>En we denote the symmetry of En with respect to the 
origin. 

We consider the class C of those mappings of Qn into the real line 
which map ao into 0, ai into ± 1 , i = l , • • • , 2n, and are linear on 
every simplex of the standard triangulation. 

A mapping / £ C will be said to be symmetric if fa(a{) =ƒ(#;), 
i= 1, • • • , In. Let Ck, fe = 0, • • • , ny be the class of symmetric maps 
which map exactly 2k vertices into — 1, let Cw+i be the class of non-
symmetric maps. 

The following lemmas explain the structure of maps in C: 

LEMMA 1.1. Letf<ECk, g&Ct. Thenf\ 
0o«g|ao iff k—i-

LEMMA 1.2. Let pEQn-Sn-\ p^a0 and let f EC. Thenf\p^g\aQ 

where g is an arbitrary mapping from Cn+\. 

Now, we can define nondegenerate mappings and singularities. 
DEFINITION. L e t / : M—>El be a PL mapping of a manifold M into 

the line. Let p&M. We say that ƒ is regular a t p if f\p~/w+i|a0, 
/n+iGCn-fi. We will say that ƒ has a nondegenerate singularity of index 
k a t p if for some ife^^, / | ^~ /&|#o , fkÇzCk. We will say that ƒ is TZÖW-

degenerate if ƒ has nondegenerate singularities a t isolated points and 
is regular elsewhere. 

In [5] M. Morse defined T-critical and ^-ordinary points of a 
continuous mapping of a topological manifold into the real line. 
Comparison of his theory with the above definition gives 

LEMMA 1.3. Let f: M—+E1 be a PL mapping of a manifold into the 
real line, let pEM. If f is regular at p then p is a T-ordinary point off; 
iff has a nondegenerate singularity of index k at p, then p is a T-critical 
point of f of index k in the sense of M. Morse. 
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2. In the last section we give a brief sketch of the proof of the 
following approximation theorem: 

THEOREM 2.1. Every continuous mapping of an unbounded manifold 
into the line may be approximated arbitrarily closely by a nondegener­
ate mapping, 

A special class of mappings of manifolds into the line is given by 
so-called height functions. If M is a manifold in a Euclidean space 
En and if L is a line in En then the height function hh on M is the 
orthogonal projection of M into L. 

THEOREM 2.2. Let ƒ: M-*En be a PL homeomorphism of a closed 
manifold and let Lbe a line in En. Then arbitrarily near to ƒ there exists 
a PL homeomorphism g: M—>En such that the height f unction HL is non-
degenerate on g(M). 

Dr. Gluck informed me that he had proved a similar theorem in 
the case of a 2-manifold in E4 (see [2]). 

Lemma 1.3 permits application of results of M. Morse [5] to non-
degenerate mappings. For instance: 

THEOREM 2.3. Morse inequalities are valid for nondegenerate f une-
tions on closed manifolds. 

For the definition of Morse inequalities see e.g. [4], 

THEOREM 2.4. Let M be a closed n-dimensional manifold and ƒ a 
nondegenerate mapping of M into the line with exactly two singular 
points. Then there exists a PL homeomorphism of M onto Sn. 

G. Reeb proved the corresponding theorem for the differentiable 
case (see e.g. [4]), and N. H. Kuiper for the topological case [3]. I t 
follows from the theorem of Kuiper together with Lemma 1.3 that 
M is homeomorphic to Sn~~l. However, in the proof of Theorem 2.4 
we do not use this result but instead apply the following 

LEMMA 2.5. Let f: M-+E1 be a nondegenerate mapping and ci, c2l 

ci^c2f two points in E1 such that f has no critical points in A = f"1 ( [ci, c2 ]). 
Then A is a regular neighborhood (in the sense of J. H. C. Whitehead 
[6]) oftKci). 

3. Henceforth, triangulation will mean Brouwer triangulation (see 
[7]). If K is a triangulation of a manifold M a n d / : M—>Ek a mapping 
which is linear on every simplex of Ky we will say that ƒ is semi-linear 
onK. 
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The proof of Theorem 2.1 starts with the following 

LEMMA 3.1. If f: M—^E1 is semilinear on a triangulation K and if 
f(P) 5e ƒ (<z) for every two distinct vertices p,qof K, then f has only isolated 
singular points. 

I t is easy to obtain an approximation to a given mapping/ : M—±EX 

which satisfies the condition of 3.1. Therefore the proof of 2.1 reduces 
to the following "local" lemma: 

LEMMA 3.2. Let M be a combinatorial cell and K a star triangulation of 
M, i.e. K = aK. Let f: M-+E1 be a semilinear mapping with only one 
singularity at a. Then there exists an arbitrarily close approximation to 
ƒ which has only nondegenerate singularities and agrees with f on a cer­
tain neighborhood of M. 

The proof of 3.2 is by induction on the dimension of M. We first 
find in M two "concentric" cells Mh M2 such that M1C.M2 — M2, 
Mi is small and has the property that ƒ | Mi has only isolated singu­
larities. Those singularities will appear only at points g* which are 
intersections of segments [api] with Mi, where pi is a vertex of K. 

Now, let K{ be the first barycentric subdivision of Ki, let Si be 
the star of g* in K{ and let 5? be the 0-sphere consisting of points a, 
tiy where ti= M2(^[api]. The complex 5»S? is then a triangulation 
of a certain (closed) neighborhood Ni of g» in M2. Now, by the induc­
tive assumption we can approximate ƒ | Si by a mapping gi semilinear 
on a subdivision 5 / of Si with nondegenerate singularities only and 
agreeing with ƒ on a neighborhood of Si in Si. The mappings gi define 
together a mapping g: Mr~*El. Let a i > a = maxa.eJjf1 g(x), we suppose 
ai — a to be small. The mapping h: M—^E1 is defined by the following 
conditions: 

(a) h{a) = a i , h(t%) =ƒ(*,), h\ Mi~g; 
(b) h\ Ni is semilinear on 5 / S0; 
(c) h(x)=f(v)iorx€M-\JNi. 
The mapping h is then the desired approximation to ƒ. 
Let us remark finally tha t it is obvious that nondegenerate map­

pings do not form an open set in the space of all PL-mappings of a 
given compact manifold M. However, we have a certain kind of 
stability with respect to a given triangulation. Namely: 

THEOREM 3.3. Let f: M-*El be nondegenerate and semi-linear on a 
triangulation K of M. Let K' be a subdivision of K. There exists an 
€>0 such that if g: M—^E1 is semilinear on K' and p(g, ƒ) <€ then for 
every PGM, f\p~g\p. 
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