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Inequalities involving linear transformations on Hilbert space and 
their spectral families will be derived for the purpose of obtaining in­
formation about the location of the spectrum. The theorems obtained 
are extensions of those given by the author [6] and H. D. Block and 
W. H. J. Fuchs [l ] to unbounded transformations for which a spectral 
decomposition theorem is valid. Such transformations include max­
imal normal and self-ad joint as well as bounded symmetric and 
unitary transformations. The domain ©y of every linear transforma­
tion T being considered is supposed to be dense in Hilbert space § . 

THEOREM 1. Let T be a self-adjoint linear transformation and let 
EÇK) be the associated spectral family of projections. For an arbitrary 
real number a and an arbitrary positive number e, let A denote the open 
interval (a — e, a+e) and let P(A) denote the projection E(a+e — 0) 
— E(a —e). Then for every x G S r and vC.E(a — 0)T)Tf the following in­
equalities are valid: 

(1) || Tx - ax\\ è e\\x - P(A)*|| ; 

(2) (av - Tv, v) è e\\v - P(A)z>||2. 

PROOF. According to the spectral decomposition theorem for self-
adjoint transformations [5, p. 180], 

||Tx - <x*||2 = C 1 X — a|2d| |£(\)x| |2 à e2 f <*||£(X)x||2 

= €2||ff - P ( A ) * | | 2 . 

This proves (1). To prove (2), let v = E(a — 0)x where # £ $ ) r . Then 
E(a — e)v — E(a+e — 0)v — P(A)v = v—P(A)vf and the spectral decom­
position theorem gives 

/

a /• a—e 

(a - \)d(E(\)v, v) à € I d(E(\)v, v) 
- o o ^ - o o 

= e(E(a — e)v, v) = e(v — P(A)fl, v). 
The first inequality of Theorem 1 generalizes without difficulty 

to normal transformations [4, p. 355; 5, pp. 311-331]. The proof fol­
lows Theorem 1 and will be omitted. 
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THEOREM 2. Let T be a maximal normal linear transformation. For 
an arbitrary complex number a and an arbitrary positive number e, let 
A denote the open disk |X —a\ <€, and let P(A) denote the associated 
spectral measure for T. Then the inequality 

(3) \\T*- «*H = € l l x ~ p(A)x\\ 
is valid for all x G ® r . 

As a first application of these inequalities, we shall obtain some 
enclosure theorems of the type given by Block and Fuchs [ l ] for 
matrices. Let S denote the spectrum of T. Suppose that a is an arbi­
trary number, in general not in 5, and suppose e is selected to be 
minxes |X—ce|. The minimum is attained since 5 is a closed set in the 
complex plane. Then AP\5 is empty and hence P(A) = 0 [3]. I t is a 
consequence of (3) that for any # £ 2 ) r , 

(4) m i n | X - a | g \\Tx - aa| |/ | |*| | . 

In the case that T is self-adjoint, (1) is used instead of (3) and (2) 
also can be used to yield 

(5) min | X - a | ^ (av - Tv, v)/\\v\\2, 
xes 

for v — E(a — 0)x, #G2)r . The notations p(T, a; x) and <r{Ti a\ x) will 
be used for the right members of (4) and (5). The results are summar­
ized in the following theorems. 

THEOREM 3. Under the assumptions of Theorem 2, the intersection of 
the disk |X — a\ Sp{T, a; x), x G S r with the spectrum of T is non­
empty. 

THEOREM 4. Under the assumptions of Theorem 1, the intersection of 
the interval [a — a(T, a; x), a] with the spectrum of T is nonempty. 

Both theorems are applicable in the case of a symmetric, com­
pletely continuous transformation on § . For the purpose of locating 
an eigenvalue Xm (Xm<Xw- i^ • • • ), the choice a=(Tx, x) is made, 
and it turns out tha t the estimate of Theorem 4 is asymptotically 
sharper than that of Theorem 3. This means that there exists a posi­
tive number rj such that 

<r(T, (Tx, x);x) < p(T, (Tx, x); x) 

for all XÇZSQ satisfying \\x—ym\\ ^rj (w = l, 2, • • • ). The proof con­
sists of some computations with the aid of the Parseval formula and 
the Schwarz inequality, and will be omitted. 
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In certain aspects of perturbation theory [2], a is chosen to be an 
isolated point in the spectrum of a transformation A which is S-close 
to T (8 > 0) in the sense that there exists a nonempty (characteristic) 
subspace 2lC3)r such that 

(7) || Tx - ax\\ ^ i\\x\\ for all * G » . 

The positive number ô is a measure of the closeness of a to T. The 
following theorems give estimates for the closeness of a to the spec­
trum of T. 

THEOREM 5. Let T be maximal normal and let a be 8-close to T. If 
A denotes the closed disk | \ — a\ ^ S , then dim[P(A)SI]^dim 91. 

THEOREM 6. Let T be symmetric and completely continuous on § . Let 
91 be an m-dimensional subspace of SQ, let a be real witha^\\T\\ and 
let ô be positive. If {ax—Tx, x) ^ô(x, x) for all x£9ï , then at least m 
eigenvalues of T lie in the interval [a— 8, a]. 

The type of perturbation described above arises in connection with 
differential operators when the perturbation arises (nonanalytically) 
from a change of domain of the operator. In such applications, prop­
erty (7) is established in a preliminary step by using special properties 
of differential equations such as the maximum principle for elliptic 
equations. 

To prove Theorem 5, we combine (3) and (7) to obtain ||x—P(A)#|| 
= (S/€)|HI> #G2t. Let 0 be an arbitrary number satisfying O < 0 < 1 
and choose e to be S/0. Then A is the disk |X — a\ <S/0and \\x — P(A)x\\ 
^0 | |x | |< | |^ | | .HenceP(A)x = Oimpliesx = O,anddim[P(A)2I]èdim2l. 
Since 0 is arbitrary, this proves Theorem 5. The proof of Theorem 6 
is similar and will be omitted. 
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