A NEW PROOF AND AN EXTENSION OF HARTOG'S THEOREM¹ ## BY LEON EHRENPREIS Communicated by Lipman Bers, July 17, 1961 Let R denote n dimensional real euclidean space and let Ω_0 be a shell in R, by this we mean that there exist open sets Ω_1 , Ω_2 where Ω_1 is relatively compact and has its closure contained in Ω_2 , and Ω_0 $=\Omega_2$ -closure Ω_1 . Call Γ_j the boundary of Ω_j . Let $D=(D_1, \dots, D_r)$ be a sequence of linear partial differential operators with constant coefficients on R with r>1. For a function f on R we write Df=0 if $D_i f = 0$ for $j = 1, 2, \dots, r$. We want to determine the conditions on D in order that the following property should hold: If f is an indefinitely differentiable function on Ω_0 with Df = 0 then there exists a unique indefinitely differentiable function h on Ω_2 with Dh=0 and h=f on Ω_0 . Hartog's theorem asserts that such an extension of f is possible if R is complex euclidean space of complex dimension n/2 = m > 1 and Ω_1 and Ω_2 are topological balls, and $D_i = \partial/\partial x_{2i-1} + i \partial/\partial x_i$ for $j=1, 2, \cdots, m$ where $x=(x_1, \cdots, x_n)$ are the coordinates on R. An extension of Hartog's theorem has been found by S. Bochner in [1] by a different method. We can find a function g defined and C^{∞} on Ω_2 such that g = f on Ω_0 except on an arbitrarily small neighborhood $N(\Gamma_1)$ in Ω_0 . (We choose $N(\Gamma_1)$ so small that its closure does not meet Γ_2 .) Call $\Omega_3 = \Omega_1 \cup N(\Gamma_1)$. We have Dg = 0 on $\Omega - \Omega_3$. We set $g_j = D_j g$, so g_j are C^{∞} and have their supports in the closure of Ω_3 ; in particular the g_j are of compact support. For any j, k, $$(1) D_k g_j = D_j g_k$$ since both sides are equal to $D_k D_j g$ in Ω_3 and zero outside. Next we take the Fourier transforms: Call P_k the Fourier transform of D_k and G_k that of g_k ; P_k is a polynomial and G_k an entire function of exponential type on C (complex n-space); the exponential type of G_k is determined by the convex hull K of Ω_3 . Moreover, G_k decreases on the real part of C faster than the reciprocal of any polynomial (see [5]). Relation (1) becomes $$(2) P_k(z)G_j(z) = P_j(z)G_k(z).$$ ¹ Work supported by ONR 432 JLP. We introduce now the assumption (a). For any j, k, P_j and P_k are relatively prime. Under this it follows from (2) that G_k is divisible by P_k in the ring of entire functions. Thus there exists an entire function H such that $$(3) H = G_k/P_k$$ for all k. Using results of Malgrange and of the author (see [1]) it follows that H is again an entire function of exponential type which decreases on the real part of C faster than the reciprocal of any polynomial. Moreover the exponential type of H satisfies the conditions to make the Fourier inverse transform h of H have its support in K. In addition, $D_i h = g_i$. We study now the support of h: h=0 outside K and $D_jh=g_j=0$ outside Ω_3 . To see what this means for the support of h, let us consider the example: n=2m, $(\Omega_1$ and Ω_2 topological balls, $D_j=\partial/\partial x_j+i\partial/\partial x_{j+m}$ for $j=1, 2, \cdots, m$). Then h is holomorphic on $R-\Omega_3$ and h=0 outside Ω_3 . If we choose Ω_3 (as we may) so that its boundary is a differentiable sphere, then it is easy to see by analytic continuation that h=0 outside Ω_3 . Thus we are led to the assumptions. (β) We can choose $N(\Gamma_1)$ in such a way that the following unique continuation property holds: If a is C^{∞} on R, and a=0 outside K, and $D_j a=0$ outside Ω_3 for $j=1, 2, \cdots, r$, then a=0 outside Ω_3 . Using assumption (β) we see that we may assume that h=0 outside Ω_3 . Now, let us set $\tilde{f} = g - h$. Then clearly - (a) \tilde{f} is C^{∞} on Ω_2 , - (b) $\tilde{f} = f$ on $\Omega_2 \Omega_3$, - (c) $D_j \tilde{f} = D_j g D_j h = g_j g_j = 0$ on Ω_2 . Thus \tilde{f} is an extension of f. It is clear that \tilde{f} is unique, for if there were two extensions say \tilde{f} and \tilde{f}_1 then $\tilde{f}-\tilde{f}_1$ would have its support in the closure of Ω_3 in particular $\tilde{f}-\tilde{f}_1$ would be of compact support which is incompatible with the fact that $D_j(\tilde{f}-\tilde{f}_1)=0$. (γ) Neighborhoods $N(\Gamma_1)$ satisfying assumption (β) can be chosen arbitrarily small. By the uniqueness property described above (or using the unique continuation property directly) we see that $\tilde{f} = f$ on Ω_0 . Thus we have the THEOREM. Under assumption (α) , (β) , (γ) any function f which is C^{∞} on Ω_0 and satisfies Df = 0 on Ω_0 possesses a C^{∞} extension \tilde{f} to Ω_2 with Df = 0 on Ω_2 . REMARKS. 1. It can be shown that the assumptions (α) , (β) , and (γ) are necessary for the theorem. - 2. A similar result holds for distribution solutions of D. - 3. For r=1 there are theorems of the above type for some D for C^{∞} solutions but for no D for distribution solutions (because of the existence of a fundamental solution). - 4. The above theorem and proof can be generalized to systems of convolution equations with invertible kernels of compact support (see [3]). - 5. The above method applies only to extending f over compact subsets of Ω_2 . In case $\Gamma_1 \cap \Gamma_2$ is not empty the problem of extending f requires new considerations. We hope to return to this question at a future date. ## BIBLIOGRAPHY - 1. S. Bochner, Partial differential equations and analytic continuations, Proc. Nat Acad. Sci. U.S.A. vol. 38 (1952) pp. 227-230. - 2. L. Ehrenpreis, Solutions of some problems of division. I, Amer. J. Math. vol. 76 (1954) pp. 883-903. - 3. —, Solutions of some problems of division. IV, Amer. J. Math. vol. 82 (1960) pp. 522-588. - 4. ——, Some applications of distributions to several complex variables, Conference on Analytic Functions, Princeton, 1957. - 5. L. Schwartz, Théorie des distributions, vol. II, Paris, Hermann, 1951. YESHIVA UNIVERSITY