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A natural question, of great generality, various special forms of
which are often asked in differential topology, is the following:

Let My, M, be differentiable n-manifolds, ¢: M1;— M, a continuous
map which is a homotopy equivalence between M; and M, When is
there a differentiable isomorphism

d: M,— M,

in the same homotopy class as ¢?

For example, there is the Poincaré Conjecture which poses the
question when M, is an n-sphere (see Smale [2], Stallings [3]).

I should like to suggest a certain simpleminded “stabilization”
of the above question.

I shall say that ® is a k-equivalence between M, and M, denoted:

P
Ml—)Mz
(%)

for k a non-negative integer, if ® is a differentiable isomorphism be-
tween My X RF and M, X R¥,

®: My X R¥— M, X R~
Now our original question may be reformulated as follows:
(Px) If ¢: Myi— M, is a homotopy equivalence, when is there a
k-equivalence
d
Ml g Mz
(%)

in the same homotopy class as ¢? (I.e., such that

M, X RS My X R

! !
M, ¢—)M2

is homotopy commutative.)
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In the above terminology, a 0-equivalence is simply a differentiable
equivalence. It is easy to give examples of homotopically equivalent
manifolds which are not 0-equivalent, however are k-equivalent for
some k=0. Thus, if K3 is the complement, in R? of the Artin-Fox wild
knot [1], the imbedding ¢: K3—R? provides a homotopy equivalence
between the two manifolds. Nevertheless, they are not 0-equivalent.
After Stallings [3], K® and R? are 2-equivalent. In [8], a manifold
Wt is constructed which is a compact contractible 4-manifold whose
boundary dW* is nonsimply connected, and such that int W* is not
differentiable isomorphic to R% It is proved, however, that W* X1 = I®
and, in particular,

int W4 = RA4.
(1)

More generally, it is a consequence of J. H. C. Whitehead’s theory
of Simple Homotopy Type [6; 7] that if A" is a compact contractible
differentiable n-manifold, there is a #=0 such that 4"»XI* is com-
binatorially isomorphic with I»+%,

In the negative direction, Whitehead proves that for the lens
spaces

Ly= LG, 7) = 83/(Z7),, i1=1,2

even though L, is homotopically equivalent to L,, L; XA¥ is not com-
binatorially equivalent to Ly XA for any £=0. This follows from his
more general theorem:

Let M., M, be differentiable z#-manifolds. They are of the same
simple homotopy type if and only if M; XAF* is combinatorially equiv-
alent to M, XA*.

DEeFINITION 1. A homotopy equivalence ¢: M7— M} between two
differentiable #-manifolds will be called a k-differential homotopy
equivalence if

(I) ¢*T(M2) + 1L = T(Ml) + 1;

where T(M) is the tangent bundle of the differentiable manifold M,
1; is is the trivial k-plane bundle, @ is the Whitney sum operation,
and if f: X—Y is a continuous map between X and ¥, E—*Y a
bundle over Y, f*E refers to the “pull back” bundle via the map f.
M, and M, will be called differentially homotopically equivalent if
they are k-differentially homotopically equivalent for some k=0.
Clearly a necessary condition for any affirmative solution of (Py) is
that the map ¢: M1— M, be a k-differential homotopy equivalence.
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This note is written as a partial statement of results to appear in
a later paper. A sketch of the proof of one of the theorems is given.
I am very thankful to John Milnor for discussions, for his sending me
a copy of [5] which suggested the main theorem, and for his im-
provements of my presentation.

THEOREM 1. Let My, M, be compact differentiable n-manifolds with-
out boundary. Then M, and M, are differentially homotopically equiv-
alent if and only if they are k-equivalent for k=n--2.

Thus, to pass from questions involving 0-equivalence to analogous
questions involving k-equivalence for large &, is to pass from differen-
tial topology to homotopy theory. The problem, given two (k+41)-
equivalent manifolds M, M., of determining whether or not they are
k-equivalent seems to have vague formal similarities with the prob-
lem of descent of the groundfield in algebraic geometry and also with
the Witt Group in the theory of quadratic forms. (Let Vi, V; be two
algebraic varieties defined over a field &, which are birationally equiv-
alent when considered over an extension field K. When are they
birationally equivalent over k?)

There are also analogous notions of stable equivalence for other
differentio-topological entities:

DerINITION 2. Two imbeddings f, g: M— W will be called k-isotopic
if the imbeddings

fr: M X RF > W X RF,
g: M X RE— W X R*
defined by:
Jilm, r) = f(m),
ge(m, 1) = g(m)

are globally isotopic.
DEFINITION 3. Let

ag. G— Aut(Ml),

as: G— Aut(My)
be differentiable actions of the group G on the manifolds M, M.,.
Then a1 and oy are called k-equivalent if the “extended” actions
o® o of G on M;XR* M,;XR* obtained by letting G act trivially

on RF are differentially equivalent (in the sense that there is a
differentiable isomorphism
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¢: My X RF— M, X RF
sending o to o).
I expect that there are theorems analogous to Theorem 1, for these
notions of k-equivalence, linking them to homotopy theoretic condi-
tions also (for large enough k). There is a generalization of Theorem 1

to vector bundles:

THEOREM 2. Let E, F be differentiable k-plane bundles over compact
n-manifolds without boundary, for k=Zn-2.

Then E is differentially homotopic to F if and only if E is isomorphic
to F, as differentiable manifolds.

COROLLARY 1. Let M7, M3 be compact n-manifolds without boundary
such that ¢: M1— M3 is a homotopy equivalence. If 0%, n; are differenti-
able k-plane bundles over M7, M3 such that

(Im T(My) + m = ¢*T(M2) + ¢*p2

and if E;=~E(n;) (3=1, 2) are the total spaces of n:, considered as
differentiable manifolds, then E,= E,.

COROLLARY 2. If M3, M3 are compact differentiable manifolds with
boundary, and of the same homotopy type, if Uy, U. are open tubular
neighborhoods of their “canonical” imbedding in R*** (k=n-+2), then
[]1z Uz.

Employing the ideas of Stallings for the proof of the Generalized
Poincaré Conjecture, =35, the following may be shown:

THEOREM 3. Let W be a differentiable manifold without boundary,
dim W=6. Let f: M—W be an imbedding of M, a compact manifold
without boundary, in W, which is a homotopy equivalence. Let E=E(£),
the total space of the differentiable vector bundle &, where E=v(f) ®1,
v(f) being the normal bundle of the imbedding f: M—W, and 1 is the
trivial line bundle.

Then E is combinatorially isomorphic with W X R.

The conclusion of Theorem 2 concerns the differential structure of
the unbounded total space of differentiable vector bundle.

For any £, a differentiable vector bundle over M, E=E(£), the
total space, let there be a Riemannian metric on £ in the sense of
[4, p. 37], and call

E(r)-——-{xEEleHér}, r > 0.

Then E(r) is a differentiable manifold with boundary S(r)
= {xEE|||x|| =7}. It is easily seen that int E(r) ~E. It is a conse-
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quence of J. H. C. Whitehead’s theory of Simple Homotopy Type
that:

THEOREM (WHITEHEAD [7]). Let E, F be k-plane bundles over com-
pact differentiable n-manifolds without boundary, such that k is suffi-
ciently large (k= k(M1, M,) where k(M,, Ms) is a constant depending
upon My and M,) such that E, F admit Riemannian metrics and E is of
the same differential homotopy type as F. Then E(r) is combinatorially
ssomorphic with F(r) if and only if E(r) has the same simple homotopy
type as F(r).

The theorem of Whitehead stated above may be improved to fit
this context as follows:

THEOREM 4. Under the situation of the previous theorem, one has:
E(r) is differentiably isomorphic with F(r) if and only if E(r) and F(r)
have the same simple homotopy type.

COROLLARY. If MY, M3 are differentiable manifolds (compact, with-
out boundary), of the same differential homotopy type, then M7 is of the
same simple homotopy type as My if and only if

M XD ~Myx D
for large enough k.

The theorems stated above have generalizations to arbitrary mani-
folds, not necessarily compact without boundary; however the notion
of differential homotopy type must be altered somewhat.

SKETCH OF THE PROOF OF THEOREM 2. Let It denote the set of
maps f: M1— M, satisfying these properties:

(1) f: My,— M, is an imbedding,

(2) f(int M) is open in My,

(3) f( M) Cint M,.

Such maps will be called open interior imbeddings.

INJECTIVE LIMITS. For any sequence of manifolds and maps,

St My > My— Mz— - - -, fiem

1 fa fs

a natural differential structure may be placed on the injective limit,
Inj Lim (S), in an obvious manner.
If

¢: E—F,
y: F— E
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are maps, ¢, Y €M, consider the sequence

S¢,¥): E->F—>E—>F—.
¥ ¢ v o ¥

obtained by iteration. Define
X (¢, ¥) = Inj Lim S(¢, ¥)

considered as a differentiable manifold.
If f: E>E is a map, fEM, consider the iterated sequence

S(f): E->E—>E—---.
©)) FEZE

Define X (f) =Inj Lim S(J).
It is tautological that
(III) X(@oy) =~ X(¢,¥) = X(¥o¢).

DEerFINITION 3. Let v: E—E, v &N,

Then E will be called v-movable if for all p: E—~E, p& M, which are
homotopic to v, and a: E—E an automorphism of E homotopic to
the identity automorphism, there exists an automorphism §: E—E
homotopic to the identity, such that

14
E— E
al Bl
ESE

is commutative.
E is called movable if it is v-movable for some » homotopic to the

identity.
ProPOSITION 1. Let E be movable and let f: E—E, fEM, be homo-
topic to the identity; then:
X(f) = int E.
PROPOSITION 2. Let E be a differentiable k-plane bundle over a com-

pact n-manifold without boundary, such that k=Zn-+2. Let r>0. Then
E(r) is movable.

Proposition 2 comes essentially from the following technical
lemma:

LEMMA. Let E be a differential vecior bundle over a compact manifold
M. Let ©: M—E denote the zero cross-section, and W a manifold. Let

[ g E—W, freem



1961] STABLE EQUIVALENCE OF DIFFERENTIABLE MANIFOLDS 383

such that
foi=goi.
Then there is an automorphism
a:W—-W,
a real number r >0,
and

a linear bundle automorphism
AN E—E

N ST
M

such that \: E(r) = E(r) for which
E(r)>W
f
A la
E(r) > W
4

15 commultative.

ProrosITION 3. Let E, F be differentiable k-plane bundles over com-
pact n-manifolds without boundary, k=n-2.
If E and F are differentiably homotopic, there exist maps

é: E(r) > F(r)  ¢: F(r) > E(r), oY EM,7r>0
such that ¢ and § are two-sided homotopy inverses.

The proof of Theorem 2 follows from these three propositions. For
the hypotheses of Theorem 2 are the hypotheses of Proposition 3.
Therefore, we are guaranteed a ¢, ¥ as in Proposition 3, and

po¥y~1rm, VYOod~I1pm.
By Propositions 1 and 2,
X(poy) = int F(r) = F,
X o¢) = int E(r) = E.
By (III)
F= X(¢oy) =~ X(yo¢) = E

proving the theorem.
THE HAUPTVERMUTUNG. It is a result of Whitehead that the lens
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spaces L;, L, are not of the same simple homotopy type. Thus
L, XA* is combinatorially inequivalent to L, XA* for any £=0.

However, L; and L, are of the same differential homotopy type.
(They are of the same homotopy type [7], and all orientable 3-
manifolds are parallelizable, so they have the same differential
homotopy type.)

It is a consequence of Theorem 1 that L, X R? is differentiably iso-
morphic with L, X RS,

Using these results, Milnor has constructed finite complexes K%,
K3 which are topologically isomorphic yet are combinatorially in-
equivalent, thus contradicting the Hauptvermutung.

Ki= (L:x YU cfa: x 8)}, i=1,2

where C {X } denotes the cone over X. That K? is topologically iso-
morphic to K3 can be seen since K} is (topologically) the one-point
compactification of L; X R (1=1, 2).
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