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Let £1, £2, • • • , £n, • • • , be a sequence of independent and identi­
cally distributed random vectors in Rk with finite second order 
moments. Let 7]n=Ui+ • • • +fn)w~1/2 and let Pn(A) =Pfo«G-4] . 
Let rj denote a random vector in Rk which is normally distributed 
and whose moments of the first two orders are identical with those 
of £1 and let P(A) =P[rjÇzA ]. Then, by the central limit theorem in 
Rk, Pn weakly converges to P. A question that arises naturally here 
is an investigation of the error of approximation Pn — P. This prob­
lem has been thoroughly investigated in the case k = l (cf. [3; 4; 5] 
and also the survey [ô] where a complete set of references is given). 
For k>l, Bergström [l ; 2] obtained bounds on the error 

sup I Fn(x) - $(*) I 
xERk 

where Fn, $ are the distribution functions of rjn and 77 respectively. 
Esseen [5] gave similar bounds for the error \Pn(A) — P(A)\, when 
A is a sphere with centre at the origin. The object of this study is to 
investigate the error An(A) = Pn(A) — P(A) for a very wide class of 
sets—namely the class of all convex subsets of Rk. 

2. Notation and preliminaries. Let £i = (£il), • • • , £ifc)). We sup­
pose that E^ = 0 for 7 = 1, 2, • • • , k, and that the variance co-
variance matrix of £1, to be denoted by V, is nonsingular. We use the 
following notation for denoting the moments and cumulants of £r. 

the cumulant of order (si, s2f • • • , Sk) will be denoted by X?«XJ- • • • 
•X|*. L e t / ( 0 denote the characteristic function of £1. Then the char­
acteristic function of t]n is [f(tn~l(2)]n. Let the polynomials Pj(w) in 
the vector w=(wi, • • • , wk) be defined by the formal identity: 

(1) exp i £ — (X1W1 + • • • + X*w*)'»-(*-2)/4 = È tr»*Pj(w). 

(Here the X's represent the cumulants of £1.) Let the functions 
P}{—<t>)i Pj(—$) for7 = 0, 1, • • • , be defined as follows: 
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(2) Pj( - <t>) (x) = (2a-)-* f Pjiit) exp ï-it'-x /' F" 1 / ! dt 

and 

(3) P , ( - $ ) ( * ) = f Pj(-4>)(y)dyi • • • dyk. 

A random vector £ in P& is said to be a lattice vector if there is a 
lattice £ of points in Rk such that P[£G<£] = 1. The lattice <£ is said 
to be minimal if there is no proper sublattice <£i of £ such that 
P [ £ £ £ i ] = 1. If £i is a lattice vector we may always suppose without 
loss of generality that the minimal lattice in which £i is concentrated 
is £o= [a+m; where a is some fixed vector and m is an arbitrary 
vector such that m = (mi, • • • , mk) where each my is an integer posi­
tive, negative or zero]. If £i is a lattice vector then we define 

(4) pn(z) = P f c + • • - + £w = z] = P[Vn = ztr1'*]. 

3. Theorems. 

THEOREM 1. Suppose that fii<<x> and that the variance covariance 
matrix of £i is the identity matrix. Then 

(5) | Pn(A) - P(A) | S c(k)/3T(logn)an~1/2 

uniformly for all (measurable) convex subsets A of Rk. In (5), 
a= (k — l ) /2(£ + l) and c(k) is a constant depending only on k. 

THEOREM 2. Suppose that the characteristic function of £i satisfies 
the condition (C) : 

limsup 1/(0 | < 1. 

If & < ° ° (s^3) then 
a— 3 /» 

(6) Pn(A) = 2 > - " 2 I AP y ( -* ) + 0{(log f,)c*-iw»n-e-*>/i} 
y«o J il 

uniformly for all (measurable) convex subsets of Rk, where the functions 
Pj(—$) are defined by (3). 

Now suppose that £i is a lattice vector concentrated in the minimal 
lattice £o. Let Si(u) =u— [u] + l/2 for all real numbers u. Then we 
have 

THEOREM 3. If & < <*>, zfeen 
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V I W \ ( t ) / \ I f\\ (\ \k/2 - ^ - 2 > / 2 ) 
2L, I Pn(z) - qn 0 ) | = 0{(log n) n } 

ze£0 

where pn(z) is defined by (4) and 

THEOREM 4. Suppose ft, < <*>. rAerc 

P » U ) = f <*(>(*) + ^"1/2 f APi ( -S) + Of»-1) 
•/ A J A 

uniformly for all Borel sets A, where 

GO*) = I I M - «•1,J5i(*y»1/2 - W )̂ 1 $(*). 
y-i L d#yJ 

7w particular 

Fn{x) = *(*) + n - 1 " / * ^ - * ) - n-^^S^Xjn1'2 - na3) + 0{fTl) 

uniformly f or x in Rk. 

For Theorems 1 and 2 the method followed is a convolution method 
similar to the one employed by Esseen [5], Theorem 3 is easily 
proved by standard techniques of Fourier analysis, and the transition 
from Theorem 3 to Theorem 4 is effected through a generalization of 
the classical Euler-Maclaurin sum formula to functions of several 
variables. The details of proofs will appear elsewhere. 

The author is greatly indebted to R. R. Bahadur for encourage­
ment and for valuable suggestions and discussions. 
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