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In an earlier paper [S] we have determined the structure of the 
linear groups over a local ring. In this note we continue the study of 
the classical groups over a local ring with the investigation of the 
orthogonal groups. 

Our main result (cf. Theorem 6 below) is a complete description 
of the invariant subgroups of an orthogonal group of noncompact 
type (i.e., of index ^ 1) over a local ring L of characteristic 5^2. Cer­
tain low dimensional cases being excluded, the result reads as follows: 
The set of invariant subgroups splits into disjoint classes Q(J) which 
are in one-to-one correspondence with the ideals / of L. Each class 
has a greatest and a smallest element, with respect to the inclusion, 
which are represented by certain congruence subgroups modulo / , 
and every group between the greatest and the smallest element of 
e (J) belongs to e (J) . 

A similar result does hold for the set of invariant subgroups of the 
commutator group of the orthogonal group; in this case, the structure 
of the classes Q(J) is very simple since each class contains at most 
two elements, and then the smaller element has index 2 in the greater 
one. 

Hence, it turns out that the structure of the orthogonal groups 
under consideration is of the same type as the structure of the linear 
groups over a local ring, cf. [S]: Here too the invariant subgroups 
split into classes which correspond to the ideals of the local ring, and 
each class has a greatest and a smallest element, represented by cer­
tain congruence subgroups, and each group in between belongs to 
the class. One may expect, therefore, that this is the typical arrange­
ment of the invariant subgroups of a classical group over a local ring. 

If the local ring L possesses no ideals apart from L and 0, i.e., 
if L is a field, then we get the results of Dieudonné [3 ; 4] on the struc­
ture of the orthogonal groups over a field. 

1. Basic definitions. A local ring is a commutative ring L with unit 
and a greatest ideal IT*L. L* = L — I forms a group under the multi­
plication. The homomorphic image of a local ring, if it is not the zero 
ring, is again a local ring. L/I is a field. We assume: cha r (L /7 )^2 . 

An (n-dimensional) vector space over L is an L-module isomorphic 
to Ln. Let $ be a symmetric bilinear form on a vector space. $ deter-

291 



292 WILHELM KLINGENBERG [May 

mines an homomorphism g$ of the vector space into its dual, cf. 
Bourbaki [2]. 4> is called nondegenerate, if g$ is an isomorphism. 

A metric vector space {over L), denoted by V or V(L), is a vector 
space over L on which there is given a nondegenerate symmetric 
bilinear form $. 

A subspace U of V is a submodule of V (considered as Z-module), 
with the following properties: (i) U is a direct summand, (ii) ker­
nel (g$\u> U-+U*) is a direct summand. 

N O T E . If L is a field, each submodule of F is a subspace. To get uni­
form definitions and results we assume: dim F ^ 3 . For a subspace U 
the orthogonal subspace U° is the submodule annulled by g$ U. U° is 
a subspace. We have: dim C7+dim t/° = dim V. U00= U. 

A subspace U is called isotropic, if kernel(g$ 11/) 3^0, and totally 
isotropic, if kernel (g$|tf) = £/. Examples of nonisotropic subspaces 
(i.e., subspaces [ /with kernel (#$1*7) =0) are F and 0 = 0-space. 

A vector X £ F is called nonisotropic, if the submodule (X), gener­
ated by X, is a nonisotropic subspace T^O. X is called isotropic, if (X) 
is isotropic. A nonisotropic vector X is characterized by the proper­
ties: X^O mod / and $ (X, X) £ L * . An isotropic vector is character­
ized by: X^O mod I and * (X, X) = 0 . 

An isomorphism of a space F into a space F ' is called isometry. 
The group of isometries of F onto F is called orthogonal group of 

V, O(V). The subgroup of isometries with determinant one is called 
special orthogonal group of V, SO( V). We have : center 0 ( F) = {1, — 1}. 
Let / be an ideal of L with JQI. The natural homomorphism 
gj : L—+L/J determines a homomorphism (also denoted by gj) 

(1) gj: V(L) -+ F ( L / / ) , 

where V(L/J) is a space over the local ring L/J with a nondegenerate 
symmetric bilinear form hj$ characterized by: (hj$)(gjX, gjY) 
= gMX, Y) for (X, Y)EVXV. We will permit in (1) also the ideal 
J=L by putting V(L/L) = 0 = 0-space. 

The homomorphism gj, (1), determines a homomorphism 

(2) fc:0(7(Z))-0(7(1/7)) 

with the characteristic property: hj<rgj = gj(r for < r£0 (F ) . Here 
0(V(L/L)) denotes the unit group E. 

The congruence subgroup mod / o f O(F) , 0 ( F , / ) , is the invariant 
subgroup consistingof the elements cr G O(F) with hj<xÇzcenter O(gjV). 
SO(V)r\0(V, J) is called special congruence subgroup mod JofSO(V), 
notation: SO(V, J). 

N O T E . 0(V, L ) « 0 ( V ) . SO(V, L) = SO(F) . 0 ( F , 0 )=cen te r 
O(F) . Here O denotes the zero ideal. 
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For each ideal J oi L the congruence commutator subgroup mod J 
of SO(V)f ö ( F , J ) , is defined as the mixed commutator group 
comm(SO(F), SO(V, J)). Q(F, L), i.e., the commutator group of 
SO(V), will also be denoted by û(V)- Note: û ( F , 0 ) = £ . 

2. The theorems of Witt and Cartan-Dieudonné. À first character­
ization of the congruence commutator groups. We have the following 
theorem which reduces to the theorem of Witt if L is a field: 

THEOREM 1. Let V and V' be isometric spaces. If cr: U—>V' is an 
isometry of a sub space U of V into V', then there exists an isometry of 
V onto V which is an extension of a. 

As a consequence we have that all maximal totally isotropic sub-
spaces of V have the same dimension; this dimension is called the 
index of V, notation: ind V. We have: 2 ind F ^ d i m V. If Uis a non-
isotropic subspace, then we have V=U+U° (direct sum). The 
symmetry with respect to U is the isometry aÇiO(V) given by cr| £/= 1, 
<r\ £ / o = - l . 

Especially important are the symmetries with respect to a (non-
isotropic) hyperplane, i.e., a subspace of codimension 1. Generalizing 
a result of E. Cartan and Dieudonné we have the 

THEOREM 2. Each element cr(E.O(V) is the product of at most 2n — 2 
symmetries with respect to a hyperplane, where n = dim V. If and only if 
cr is in SO(V), the number of symmetries representing a will be even. 

REMARK. If L is field, each <r(EO(V) can be written as a product 
of ^w symmetries with respect to a hyperplane (cf. Dieudonné [3]). 
We have not been able to prove this for a general local ring. As a 
consequence of Theorem 2 we have that the homomorphism hj, 
(2), is a map onto. 

A first characterization of the congruence commutator groups is 
given by the 

THEOREM 3. Q( V, J) is being generated by the elements (TT')2, where 
T and T' are symmetries with respect to hyperplanes and hj(rrf) = 1. 

Among the consequences we have Û(F) contains the square of each 
element of SO(V). SO(V)/Q(V) is commutative and each element 
has order ^ 2 . The centralizer of Q(F) is equal to the centralizer of 
SO(V) in O(V) and consists of the elements 1 and — 1. center SO{V) 
= SO(V)Picenter O(V). center a(V) = &(V)(Reenter O(V). 

3. The Clifford algebra and the spinor norm. A second character­
ization of the congruence commutator group. The Clifford algebra 
over Vy C(V)} is defined in the usual way, cf. Bourbaki [2]. Denote 
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by C+(V) the subalgebra of C(V) generated by the products of an 
even number of vectors. In the multiplicative group of C+(V) we 
have the special Clifford group, D(V), consisting of the products of 
an even number of nonisotropic vectors, considered as elements of 
C(V). D(V)/L* is canonically isomorphic to SO(V). 

On D(V) we have a canonical homomorphism N into the multipli­
cative group L* (Bourbaki [2] calls this homomorphism spinor 
norm) which is quadratic in L*. Since SO(V) is isomorphic to 
D(V)/L*, N determines a homomorphism 

(3) 6:SO(V)->L*/L*2 

which we call spinor norm. 
For a G SO ( 7 ) , 0 (cr) is determined as follows : According to Theorem 

3, a can be represented as the product of an even number of sym­
metries Ti with respect to nonisotropic hyperplanes H*. For each iy 

choose a nonisotropic vector AiGH%. Then 0(a) = 11$ (-4*, Ai)L*2. 
kernel (0) is called reduced orthogonal group over V, Or{V). Obviously 

û ( 7 ) C O ' ( 7 ) . 
If ind 7 = 1 , then 0 ' (V) = Û(7) and the spinor norm 0, (3), plays 

for the orthogonal groups the same role which the determinant plays 
for the linear groups. In particular, the spinor norm yields a second 
characterization of the congruence commutator groups: 

THEOREM 4. Assume ind 7—• 1. Let J be an ideal of L with JC.I» 
Denote by 6j the homomorphism 

SXhjicrG SO(V) -+ (6(a), hj) G L*/L*2 X SO(gjV), 

(i) kernel(0: SO(V)->L*/L*2) = a(V) 
kernel(0j: SO(V)->L*/L*2XSO(gjV)) = Q(7 , J), 

(ii) SO(V)/Q(V) is isomorphic to image(0) = L*/L*2, and 
SO(V, J ) / Q ( 7 , J) is isomorphic to image (0j\ SO ( 7 , J))^lhe sub­
group of L*/L*2X center SO(gjV) consisting of the pairs (d, <f) with 

gJa=d(a). 
(iii) (SO(V, 7 ) n û ( 7 ) ) / û ( 7 , J) is isomorphic to center Cl(gjV). 

COROLLARY, (i) kernel (A/: û (7) ->û(&r7) ) = û ( 7 , J), 
(ii) If dim V odd, i.e., if center SO(gjV) = l, then SO(V, J)/a(V, J) 

is isomorphic to g^ÇL/J)*2/!,*2, 
(iii) If dim V odd, then center Q(g/7) = 1 and therefore: SO(V, J) 

n a ( 7 ) = Q(7, J). 

4. The projective linear groups in 2 variables over a local ring. Let 
L be a local ring with greatest ideal IT*L. Assume char(L/7) 5^2 and 
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L/IT^FZ. In [5] we have defined the general and the special linear 
group in 2 variables over L, denoted by GL(2, L) and SL(2, L), respec­
tively. 

For each ideal J of I we have the canonical homomorphism 

(4) hj: GL(2, L) -> GL(2, L/J). 

Here, GL(2, L/L) denotes the unit group. Using the map hj, (4), and 
the determinant, we have, for each ideal J of L, the following two 
invariant subgroups, cf. [S]: 

GC(2, L,J) = group of the a G GL(2, L) with hja G center GL(2, L/J), 

SC(2, L, J) = group of the <r G GL(2, L) with kjcr = 1 and det a = 1. 

N O T E . GC(2, L, L)=GL(2 , L) ; 5C(2, L, L)=SL(2, L). 
Consider the canonical homomorphism 

(5) P : GZ,(2, L) -* GZ(2, Z)/center GZ(2, i ) . 

The image PGL(2, L) of GL(2, L) under the map (5) is called projec­
tive linear group in 2 variables over L. 

The homomorphism hj, (4), induces a homomorphism of PGL(2, L) 
into PGL(2t L/J) which we again denote by hj. The determinant 
induces a map: PGL(2, L)—>L*/L*2 which we again denote by det. 
Then the images PGC{2, L, J) and PSC(2, L, / ) of the groups 
GC(2, L, / ) and 5C(2, L, J ) , respectively, under the map P , (5), can 
be characterized as follows : 

PGC(2, L, J) 

= group of the o- G PGZ,(2, L) with A/cr = 1 G PGZ(2, Z /J ) , 

PSC(2, £, / ) 

= group of the <r G PGZ(2, Z,) with A/<r = 1 and det <r = L*2. 

In [5] we have determined the structure of the group GL(2, L). To­
gether with the preceding remarks, this yields the following 

STRUCTURE THEOREM FOR PGL(2, L). 
(i) Each subgroup G ofPGL(2, L) which is invariant under PSL(2, L) 

determines an ideal J of L such that 

(*) PSC(2, L, J) C G C PGC(2, L, J) 

andt converselyt each subgroup G of PGL(2, L) satisfying (*) is in­
variant in PGL(2, L). 

(ii) In PSL(2, L) all the invariant subgroups are of the form 
PSC(2, Lf J) , where J runs through the ideals of L. 
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5. The isomorphisms of certain orthogonal groups over V with 
projective linear groups in 2 variables, for dim F = 3 and 4. The 
properties of the Clifford algebra C(V) over V yield in a natural 
way an isomorphism of certain orthogonal groups over 3- and 4-
dimensional spaces into projective linear groups in 2 variables. These 
isomorphisms are of fundamental importance for the determination 
of the structure of orthogonal groups of spaces with arbitrary dimen­
sion, cf. §6. 

THEOREM 5. 

(i) Assume dim F = 3 and ind F = l and L/I^F*. Then SO(V) is 
isomorphic to PGL(2, L). Under this isomorphism, the group SO(V, J) 
goes into PGC{2, L, J) and the group ö ( F , / ) goes into PSC(2, L, J). 
In particular, 12(F) goes into PSL(2, L), 

(ii) Assume dim F = 4 and ind F = i n d giV=\. Then PSO(V) 
= SO(V)/center SO(F) is isomorphic to a subgroup PU{2, L') of 
PGL(2, U), where L' = L(A1/2) is a local ring, obtained from L by a 
quadratic extension with an element A Go ( — 1). Under this isomorphism, 
the group PQ(V, J), isomorphic to &(V,J), goes into PSC{2, L', J'), 
J' = JL'. In particular, P£l(V), isomorphic to û ( F ) , goes into PSL{2, 
L'). 

6. The structure of the groups SO( V) and û( F) for ind F ^ 1. Let 
G be a subgroup of SO(V). The order of G, o(G), is the smallest ideal 
/ with SO(V, J ) D G , i.e., the smallest ideal / with hjGCcenter 
SO(gjV). ^ 

Assume ind F ^ 1. From Theorem 3 we see that û ( F , J) has order 
J. From Theorem 4 (ii) we have that SO(V, J)/£l(V, J) is commuta­
tive, and since SO(V, J) and û ( F , / ) are invariant, we have: Each 
subgroup G of SO(V) satisfying Q(V, J) CGCSO(V, J) is invariant 
and of order / . The following theorem asserts that these are the only 
invariant subgroups (and even the only subgroups invariant under 
a ( F ) ) of SO(F) of order J : 

THEOREM 6. Let V be a space over a local ring L, char L/I?*2. As­
sume ind F è l f dim F ^ 3 . If dim F = 3 , assume L/I^F^. If dim F 
= 4, assume ind giV= 1. 

(i) Each subgroup G of SO(V) of order o(G) =J which is invariant 
under Û(F) satisfies the conditions 

(*) Q(7 ,J) C G C SO(V,J). 

Conversely, every subgroup G of SO(V) satisfying (*) is invariant in 
SO(V) and of order J. 
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(ii) Each invariant subgroup G of £l(V) of order o(G)=J is of the 
form G = Q ( 7 , J) or SO(V, J ) n o ( F ) . (SO(V, J)r\a(V))/a(V, J) 
is isomorphic to center Çl(gjV). 

REMARK. The proof of the preceding results is based upon an 
elaboration of the methods which have been developed, for an essen­
tial part by Dieudonne, for the investigation of the orthogonal groups 
over a field, cf. also Artin [ l ] . 

In particular, Theorem 6 is proved by relating the structure of 
the group SO(V) with the structure of the groups mentioned in 
Theorem 5, and the structure of these latter groups is known, as we 
have stated in §4, due to the results of our earlier paper [S]. 
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