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The purpose of this note is to strengthen the results of [3 ] and to 
indicate a very brief derivation of some theorems announced without 
proof in [ l ; 3 ] . 

We begin by indicating a correction to [3]. Let Si and S2 be Rie­
mann surfaces, ƒ an orientation preserving (orientation reversing) 
homeomorphism of bounded eccentricity of Si onto 52 and [ƒ] the 
homotopy class of/; then (Si, [ƒ], S2) is called an even (odd) coupled 
pair of Riemann surfaces. The definition of equivalence of such pairs 
given in [3 ] is imprecise and garbled by misprints. The correct defini­
tion reads: (Si, [ƒ], S2) and (Si , [ƒ'], S2') are called equivalent if 
there exist conformai homeomorphisms hi and fe with Ai(Si)=Si , 
A2(S2) =S2 ' and [fe/] = [f'hi] ; the two pairs are called strongly equiva­
lent if S{ = S2 and there exists a conformai homeomorphism h with 
h(Si) = S i and [ƒ] = [ƒ'&]. If S0 is a Riemann surface, then the Teich-
müller space T(So) can be thought of as the set of strong equivalence 
of even pairs (S, [ƒ], So) (and not of simple equivalence classes as 
stated in [3]).2 

From now on we assume that S0 is a fixed closed Riemann surface 
of genus g> 1, and we write T instead of T(S0). T has a natural com­
plex analytic structure and can be represented as a bounded domain, 
homeomorphic to a ball, in complex number space with coordinates 
(moduli) TI, • • • , r3fl_3 (cf. [ l ; 2]). Points of Twill be denoted by r. 
We may assume that S0 is given as the unit disc modulo a fixed-
point-free Fuchsian group, and that r = 0 corresponds to the pair 
(So, [identity], S0). 

THEOREM I. One can associate to every rÇ.T a bounded Jordan do­
main D(r) and 2g M'dbius transformations z-*Aj(z, r ) , z—>Bj(z, r ) , 
j ~ 1> * # * ,g, such that the following conditions are satisfied. 

1 This paper represents results obtained at the Institute of Mathematical Sciences, 
New York University, under the sponsorship of the Office of Ordnance Research, 
U. S. Army, Contract No. DA-30-069-ORD-2153. Reproduction in whole or in part 
permitted for any purpose of the United States Government. 

2 We also note the following errata to [2; 3]. On p. 94, 1. 19, replace Ü*) by /*({*). 
On p. 96,1. 15, replace the subscript.; by 2/\ On p. 97,1. 21, replace Cr by Cr. On p. 100, 
1. 4, replace 'covering' by 'covering space.' On p. 103, equation (9) replace the ex­
ponent 3g—3n-\-n by 3g—3+n. 
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(i) The boundary curve of D(T) admits the parametric representation 
z = a(eie, r ) , O^0^27r, depending holomorphically on r . 

(ii) The Aj and Bj depend holomorphically on r and satisfy the rela­
tion 

(i) f l AJBJAT'BT1 = i . 

For every fixed r£T they generate, with the single defining relation (1), 
a fixed-point-free discrete group G(r) of conformai self-mappings of 
D(T), SO that S(T) =D(T)/G(T) is a closed Riemann surface of genus g. 
5(0) is the surface 50 . 

(iii) Denote by a(r) the basis of the fundamental group of S(T) defined 
by Ai, • • • , Bg, and by fT a quasiconformal mapping of S(j) onto 5(0) 
which takes a(r) into a(0). Then the point r corresponds to the pair 
(5(r), ft], So). 

This statement differs from Theorem 2 in [3] primarily by the 
boundedness condition for D(T) and can be obtained from that theo­
rem without much difficulty. 

We denote by M the domain in complex number space of 3g — 2 
dimensions which consists of points (z, r) with ZÇ.D(T) and rÇiT. By 
Theorem 3 in [3 ] M is holomorphically equivalent to T(So — {p} ) for 
a fixed p(E.So. 

We denote by WQ(T) the (complex) vector space of holomorphic 
functions <f>(z), zÇzD(f), for which 4>{z)dzq is invariant under G{r)\ 
this is the same as the space of g-dimensional holomorphic differen­
tials on S(T), SO that dim Wq{r) = 0 , 1, g, or (2g — l)(g— 1) according 
to whether g < 0 , q = 0, <z = l, or q>l. In W\(T) there exist g distin­
guished elements, phiz, r ) , determined by the conditions 

pk(z', r)dz' = fa; 

these correspond to the normalized Abelian differentials of the first 
kind on S(T) belonging to the "canonical" homology basis a(r) deter­
mined by a( r ) . The period matrix of S(T) belonging to a(r) will be 
denoted by Z(T). I t has the elements 

pk{z', r)dz' 

and is a point in the Siegel space of symmetric matrices with positive 
definite imaginary part. 
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We denote by Wq the vector space of holomorphic functions $(z, r ) , 
(s, r )£Af, which belong to Wq(r) for every fixed r G T . 

THEOREM II . Every element of WQ{T) is a restriction of an element of 
wq. 

PROOF. Assume that q ^ 2. Let Cy, j= 1, 2, • • • , be a complete sys­
tem of nonequivalent (with respect to (1)) words in the letters 
Ai, • • • , Bg. If P(t) is a polynomial, then the Poincaré series 

(3) iPiCfarMdCfarydz)* 

converges normally in M and its sum belongs to Wq. On the other 
hand, since D(r) is a bounded Jordan domain and G(T) has a com­
pact fundamental region, Theorem 4 in [4] implies that, for a fixed r, 
every element of WQ(r) is of the form (3). 

For g = l we shall show that every pj belongs to W\ (i.e., that the 
normalized Abelian differentials are holomorphic functions of the 
moduli). 

THEOREM I I I . The functions pk(z, r ) , fe = 1, • • •, g, are holomorphic 
in M. 

PROOF. I t suffices to consider pi. We shall show that in a neighbor­
hood of a fixed but arbitrary point ToGTwe have an identity of the 
form 

(4) Pi(z, T) = *(s, r ) - 1 £ <*(T)#,(*, T) 

where the cy are holomorphic, $ 6 W 2 , and the $y are elements of W3. 
We first choose $ so that $(z, r0) vanishes at 4g — 4 points s» which are 
not equivalent under G(T0). This is possible since the "general" holo­
morphic quadratic differential on 5(r) has only simple zeros (Bertini) 
and hence exactly 4g —4 of those. There exist 4g — 4 holomorphic 
functions fi(r) defined near T0, such that ft(r0) = 0 and $(s»+fi(r) , r) 
= 0. In order that the right hand side of (4) belong to WI(T) it is neces­
sary and sufficient that 

2>y(r)*y(*« + f<(r), r) = 0, t = 1, • • - , 4g - 4, 

and one sees a t once that any 4g — 5 of these equations imply the 
(4g — 4)th. In order that (4) hold near r0 the Cj must satisfy g addi­
tional linear equations which are obtained from (1) by setting k = l 
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and choosing a fixed point z and fixed paths of integration, avoiding 
the points s». The resulting linear system, with holomorphic coeffi­
cients, for the unknown functions cj, is uniquely solvable at To if the 
functions $1, • • • , $50-5 are chosen so as to be linearly independent 
for T = T0. In this case the equations are also uniquely solvable for r 
close to To, and the solutions depend holomorphically on T. 

We proceed to derive some consequences from Theorems II and 
II I . 

(a) The functions 

fij = Pi/Ph f m = firld log fij/dz 

are meromorphic in M. This proves Theorem J in [ l ] . I t is classical 
that every meromorphic function in D(T) which is automorphic under 
G(T) can be expressed rationally in terms of the functions fa, f au 
(and even in terms of the fa alone if S(T) is not hyperelliptic). Thus 
we obtain a proof of Theorem 4 in [3 ] which asserts the existence of 
finitely many meromorphic functions of the moduli and of an addi­
tional complex variable, which uniformize simultaneously all alge­
braic curves of genus g> 1. 

(b) Let us choose (2q — \)(g — 1) elements of Wq, q>l (or g ele­
ments of Wi) which are linearly independent for T = TO, and let w(z, r) 
denote their Wronskian with respect to z. For a fixed r close to T0 

the zeros of w(zt r) are precisely the Weierstrass points of 5 ( T ) , in 
the classical sense if g = 1, in the sense of Petersson if g > l (cf. the 
definition in [4]). Since w is a holomorphic function in M we conclude 
that the Weierstrass points on a closed Riemann surface depend holo­
morphically on the moduli (cf. Rauch [ó], Röhrl [3]). 

(c) Now let w(z, T) denote the Wronskian of an arbitrary set of 
dim Wq(r) elements of Wq and let N denote the set of those T £ T for 
which w(z, T) = 0 . If Zo is not a Weierstrass point of 5(TO), then there 
is a neighborhood of T0 in which the points of N are precisely the zeros 
of w(zo, T) . We conclude that N is either empty, or the whole domain T, 
or an analytic subset of T of codimension 1. 

(d) Let H denote the set of those T £ T for which S(T) is hyper­
elliptic. For T(ELT—H every element of Wq(r) can be written as a 
homogeneous polynomial in the pj (M. Noether). For TÇ:H the sub-
space of Wq(f) consisting of homogeneous polynomials in elements of 
W\(T) has dimension q(g—1) + 1. But H is an analytic subvariety of 
T of dimension 2g — 1, so that, noting (c), we obtain the following 
complement to Noether's theorem: for g>3 and q>l there exist no 
fixed set of (2q— l)(g— 1) homogeneous polynomials of degree q in nor-
malized Abelian differentials of the first kind which spans the space of 
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holomorphic differentials of dimension q on all nonhyperelliptic closed 
Riemann surfaces of genus g. 

(e) The mapping T—>Z(J) of the Teichmüller space into the Siegel 
space is holomorphic. This follows at once from Theorem III , and also 
by using the coordinates in T denned in [ l ] in conjunction with 
Rauch's variational formulas [S]. These formulas also show that the 
mapping of T in to a (3g —3)-dimensional subspace of the Siegel space 

T - > | Ë yj.ikZikir), j = 1, • • • , 3g - 3> 

is one-to-one near a point TO if and only if the 3g — 3 functions 

] £ 7j,ikpi(Zy T0)pk(z To) 

are linearly independent. This shows that near every nonhyper­
elliptic surface a properly chosen set of 3g — 3 periods Zik can serve 
as a set of local moduli (Rauch). On the other hand, (d) implies a 
complement to Rauch's theorem : no fixed set of 3g — 3 linear combina­
tions of periods can serve as a set of moduli near every nonhyperelliptic 
closed Riemann surface of genus g>3. 
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