HOLOMORPHIC DIFFERENTIALS AS FUNCTIONS OF MODULI¹

LIPMAN BERS

Communicated November 21, 1960

The purpose of this note is to strengthen the results of [3] and to indicate a very brief derivation of some theorems announced without proof in [1; 3].

We begin by indicating a correction to [3]. Let S_1 and S_2 be Riemann surfaces, f an orientation preserving (orientation reversing) homeomorphism of bounded eccentricity of S_1 onto S_2 and [f] the homotopy class of f; then $(S_1, [f], S_2)$ is called an even (odd) coupled pair of Riemann surfaces. The definition of equivalence of such pairs given in [3] is imprecise and garbled by misprints. The correct definition reads: $(S_1, [f], S_2)$ and $(S_1', [f'], S_2')$ are called equivalent if there exist conformal homeomorphisms h_1 and h_2 with $h_1(S_1) = S_1'$, $h_2(S_2) = S_2'$ and $[h_2f] = [f'h_1]$; the two pairs are called strongly equivalent if $S_2' = S_2$ and there exists a conformal homeomorphism h with $h(S_1) = S_1'$ and [f] = [f'h]. If S_0 is a Riemann surface, then the Teichmüller space $T(S_0)$ can be thought of as the set of strong equivalence of even pairs $(S, [f], S_0)$ (and not of simple equivalence classes as stated in [3]).²

From now on we assume that S_0 is a fixed closed Riemann surface of genus g>1, and we write T instead of $T(S_0)$. T has a natural complex analytic structure and can be represented as a bounded domain, homeomorphic to a ball, in complex number space with coordinates (moduli) $\tau_1, \dots, \tau_{3g-3}$ (cf. [1; 2]). Points of T will be denoted by τ . We may assume that S_0 is given as the unit disc modulo a fixed-point-free Fuchsian group, and that $\tau=0$ corresponds to the pair $(S_0, [identity], S_0)$.

THEOREM I. One can associate to every $\tau \in T$ a bounded Jordan domain $D(\tau)$ and 2g Möbius transformations $z \to A_j(z, \tau)$, $z \to B_j(z, \tau)$, $j = 1, \cdots, g$, such that the following conditions are satisfied.

¹ This paper represents results obtained at the Institute of Mathematical Sciences, New York University, under the sponsorship of the Office of Ordnance Research, U. S. Army, Contract No. DA-30-069-ORD-2153. Reproduction in whole or in part permitted for any purpose of the United States Government.

² We also note the following errata to [2; 3]. On p. 94, l. 19, replace (ζ) by $\mu(\zeta)$. On p. 96, l. 15, replace the subscript j by 2j. On p. 97, l. 21, replace C_r by C^r . On p. 100, l. 4, replace 'covering' by 'covering space.' On p. 103, equation (9) replace the exponent 3g-3n+n by 3g-3+n.

- (i) The boundary curve of $D(\tau)$ admits the parametric representation $z = \sigma(e^{i\theta}, \tau), \ 0 \le \theta \le 2\pi$, depending holomorphically on τ .
- (ii) The A_j and B_j depend holomorphically on τ and satisfy the relation

(1)
$$\prod_{j=1}^{g} A_{j}B_{j}A_{j}^{-1}B_{j}^{-1} = 1.$$

For every fixed $\tau \in T$ they generate, with the single defining relation (1), a fixed-point-free discrete group $G(\tau)$ of conformal self-mappings of $D(\tau)$, so that $S(\tau) = D(\tau)/G(\tau)$ is a closed Riemann surface of genus g. S(0) is the surface S_0 .

(iii) Denote by $\alpha(\tau)$ the basis of the fundamental group of $S(\tau)$ defined by A_1, \dots, B_q , and by f_{τ} a quasiconformal mapping of $S(\tau)$ onto S(0) which takes $\alpha(\tau)$ into $\alpha(0)$. Then the point τ corresponds to the pair $(S(\tau), [f_{\tau}], S_0)$.

This statement differs from Theorem 2 in [3] primarily by the boundedness condition for $D(\tau)$ and can be obtained from that theorem without much difficulty.

We denote by M the domain in complex number space of 3g-2 dimensions which consists of points (z, τ) with $z \in D(\tau)$ and $\tau \in T$. By Theorem 3 in [3] M is holomorphically equivalent to $T(S_0 - \{p\})$ for a fixed $p \in S_0$.

We denote by $W_q(\tau)$ the (complex) vector space of holomorphic functions $\phi(z)$, $z \in D(\tau)$, for which $\phi(z)dz^q$ is invariant under $G(\tau)$; this is the same as the space of q-dimensional holomorphic differentials on $S(\tau)$, so that dim $W_q(\tau) = 0$, 1, g, or (2q-1)(g-1) according to whether q < 0, q = 0, q = 1, or q > 1. In $W_1(\tau)$ there exist g distinguished elements, $p_k(z, \tau)$, determined by the conditions

(2)
$$\int_{z}^{A_{i}(z,\tau)} p_{k}(z',\tau)dz' = \delta_{ik};$$

these correspond to the normalized Abelian differentials of the first kind on $S(\tau)$ belonging to the "canonical" homology basis $a(\tau)$ determined by $\alpha(\tau)$. The period matrix of $S(\tau)$ belonging to $a(\tau)$ will be denoted by $Z(\tau)$. It has the elements

$$Z_{ik}(\tau) = \int_{z}^{B_{i}(z,\tau)} p_{k}(z',\tau) dz'$$

and is a point in the Siegel space of symmetric matrices with positive definite imaginary part.

We denote by W_q the vector space of holomorphic functions $\Phi(z, \tau)$, $(z, \tau) \in M$, which belong to $W_q(\tau)$ for every fixed $\tau \in T$.

THEOREM II. Every element of $W_q(\tau)$ is a restriction of an element of W_q .

PROOF. Assume that $q \ge 2$. Let C_j , $j = 1, 2, \cdots$, be a complete system of nonequivalent (with respect to (1)) words in the letters A_1, \cdots, B_q . If P(t) is a polynomial, then the Poincaré series

(3)
$$\sum_{j=1}^{\infty} P(C_j(z,\tau)) (\partial C_j(z,\tau)/\partial z)^q$$

converges normally in M and its sum belongs to W_q . On the other hand, since $D(\tau)$ is a bounded Jordan domain and $G(\tau)$ has a compact fundamental region, Theorem 4 in [4] implies that, for a fixed τ , every element of $W_q(\tau)$ is of the form (3).

For q=1 we shall show that every p_j belongs to W_1 (i.e., that the normalized Abelian differentials are holomorphic functions of the moduli).

THEOREM III. The functions $p_k(z, \tau)$, $k = 1, \cdots, g$, are holomorphic in M.

PROOF. It suffices to consider p_1 . We shall show that in a neighborhood of a fixed but arbitrary point $\tau_0 \in T$ we have an identity of the form

(4)
$$p_1(z,\tau) = \Phi(z,\tau)^{-1} \sum_{i=1}^{5g-5} c_j(\tau) \Phi_j(z,\tau)$$

where the c_j are holomorphic, $\Phi \in W_2$, and the Φ_j are elements of W_3 . We first choose Φ so that $\Phi(z, \tau_0)$ vanishes at 4g-4 points z_i which are not equivalent under $G(\tau_0)$. This is possible since the "general" holomorphic quadratic differential on $S(\tau)$ has only simple zeros (Bertini) and hence exactly 4g-4 of those. There exist 4g-4 holomorphic functions $\zeta_i(\tau)$ defined near τ_0 , such that $\zeta_i(\tau_0) = 0$ and $\Phi(z_i + \zeta_i(\tau), \tau) = 0$. In order that the right hand side of (4) belong to $W_1(\tau)$ it is necessary and sufficient that

$$\sum_{i=1}^{5g-5} c_j(\tau) \Phi_j(z_i + \zeta_i(\tau), \tau) = 0, \qquad i = 1, \dots, 4g-4,$$

and one sees at once that any 4g-5 of these equations imply the (4g-4)th. In order that (4) hold near τ_0 the c_j must satisfy g additional linear equations which are obtained from (1) by setting k=1

and choosing a fixed point z and fixed paths of integration, avoiding the points z_i . The resulting linear system, with holomorphic coefficients, for the unknown functions c_j , is uniquely solvable at τ_0 if the functions $\Phi_1, \dots, \Phi_{\delta_g-\delta}$ are chosen so as to be linearly independent for $\tau = \tau_0$. In this case the equations are also uniquely solvable for τ close to τ_0 , and the solutions depend holomorphically on τ .

We proceed to derive some consequences from Theorems II and III.

(a) The functions

$$f_{ij} = p_i/p_j, \qquad f_{ijk} = f_k^{-1}\partial \log f_{ij}/\partial z$$

are meromorphic in M. This proves Theorem J in [1]. It is classical that every meromorphic function in $D(\tau)$ which is automorphic under $G(\tau)$ can be expressed rationally in terms of the functions f_{ij} , f_{ijk} (and even in terms of the f_{ij} alone if $S(\tau)$ is not hyperelliptic). Thus we obtain a proof of Theorem 4 in [3] which asserts the existence of finitely many meromorphic functions of the moduli and of an additional complex variable, which uniformize simultaneously all algebraic curves of genus g > 1.

- (b) Let us choose (2q-1)(g-1) elements of W_q , q>1 (or g elements of W_1) which are linearly independent for $\tau=\tau_0$, and let $w(z,\tau)$ denote their Wronskian with respect to z. For a fixed τ close to τ_0 the zeros of $w(z,\tau)$ are precisely the Weierstrass points of $S(\tau)$, in the classical sense if q=1, in the sense of Petersson if q>1 (cf. the definition in [4]). Since w is a holomorphic function in M we conclude that the Weierstrass points on a closed Riemann surface depend holomorphically on the moduli (cf. Rauch [6], Röhrl [3]).
- (c) Now let $w(z, \tau)$ denote the Wronskian of an arbitrary set of dim $W_q(\tau)$ elements of W_q and let N denote the set of those $\tau \in T$ for which $w(z, \tau) \equiv 0$. If z_0 is not a Weierstrass point of $S(\tau_0)$, then there is a neighborhood of τ_0 in which the points of N are precisely the zeros of $w(z_0, \tau)$. We conclude that N is either empty, or the whole domain T, or an analytic subset of T of codimension 1.
- (d) Let H denote the set of those $\tau \in T$ for which $S(\tau)$ is hyperelliptic. For $\tau \in T-H$ every element of $W_q(\tau)$ can be written as a homogeneous polynomial in the p_j (M. Noether). For $\tau \in H$ the subspace of $W_q(\tau)$ consisting of homogeneous polynomials in elements of $W_1(\tau)$ has dimension q(g-1)+1. But H is an analytic subvariety of T of dimension 2g-1, so that, noting (c), we obtain the following complement to Noether's theorem: for g>3 and q>1 there exist no fixed set of (2q-1)(g-1) homogeneous polynomials of degree q in normalized Abelian differentials of the first kind which spans the space of

holomorphic differentials of dimension q on all nonhyperelliptic closed Riemann surfaces of genus g.

(e) The mapping $\tau \to Z(\tau)$ of the Teichmüller space into the Siegel space is holomorphic. This follows at once from Theorem III, and also by using the coordinates in T defined in [1] in conjunction with Rauch's variational formulas [5]. These formulas also show that the mapping of T into a (3g-3)-dimensional subspace of the Siegel space

$$\tau \rightarrow \left\{ \sum_{i:k=1}^{g} \gamma_{j,ik} Z_{ik}(\tau), j=1,\cdots,3g-3 \right\}$$

is one-to-one near a point τ_0 if and only if the 3g-3 functions

$$\sum_{i,k=1}^{g} \gamma_{j,ik} p_i(z, \tau_0) p_k(z, \tau_0)$$

are linearly independent. This shows that near every nonhyperelliptic surface a properly chosen set of 3g-3 periods Z_{ik} can serve as a set of local moduli (Rauch). On the other hand, (d) implies a complement to Rauch's theorem: no fixed set of 3g-3 linear combinations of periods can serve as a set of moduli near every nonhyperelliptic closed Riemann surface of genus g>3.

REFERENCES

- 1. Lipman Bers, Spaces of Riemann surfaces, Proceedings of the International Congress of Mathematicians, Edinburgh, 1958, pp. 349-361.
- 2. —, Spaces of Riemann surfaces as bounded domains, Bull. Amer. Math. Soc. vol. 66 (1960) pp. 98-103.
- 3. ——, Simultaneous uniformization, Bull. Amer. Math. Soc. vol. 66 (1960) pp. 94-97.
 - 4. ——, Completeness theorems for Poincaré series in one variable, to appear.
- 5. H. E. Rauch, On the transcendental moduli of algebraic Riemann surfaces, Proc. Nat. Acad. Sci. U.S.A. vol. 41 (1955) pp. 42-49.
- 6. ——, Weierstrass points, branch points, and moduli of Riemann surfaces, Comm. Pure Appl. Math. vol. 13 (1959) pp. 543-560.
- 7. Helmut Röhrl, On holomorphic families of fiber bundles over the Riemann sphere, to appear.

New York University