MARTINGALES OF BANACH-VALUED RANDOM VARIABLES¹

BY S. D. CHATTERJI

Communicated by J. L. Doob, July 18, 1960

1. Let $(\Omega, \mathfrak{B}, P)$ be a probability space and let \mathfrak{X} be a Banach space. Let $X(\omega)$ be a Bochner-integrable function on $(\Omega, \mathfrak{B}, P)$ taking values in \mathfrak{X} . Let \mathfrak{F} be a Borel-field contained in \mathfrak{B} . We define $E(X \mid \mathfrak{F})$, "a conditional expectation of $X(\omega)$ relative to \mathfrak{F} " as a Bochner-integrable function on $(\Omega, \mathfrak{B}, P)$ (henceforth called random variable or r.v.) such that $E\{X \mid \mathfrak{F}\}$ is measurable \mathfrak{F} and that

$$\int_{A} E(X \mid \mathfrak{F}) dP = \int_{A} X dP, \qquad A \in \mathfrak{F},$$

where the integrals are Bochner-integrals.

Let I be a subset of the set of all integers and let $X_i(\omega)$, $i \in I$ be Bochner-integrable \mathfrak{X} -valued r.v.'s. Let $\mathfrak{F}_i \subset \mathfrak{G}$, $i \in I$ be a set of Borel-fields such that

$$\mathfrak{F}_i \subset \mathfrak{F}_i$$
 if $i < j$.

The triple $\{X_i, \mathfrak{F}_i, i \in I\}$ will be called a martingale if whenever

$$i < j, i, j \in I,$$

$$X_i = E(X_j \mid \mathfrak{F}_i), \text{ a.e.}$$

If $Z(\omega)$ is any Bochner-integrable r.v. and if we define

$$X_i = E(Z \mid \mathfrak{F}_i)$$

then it follows directly from above that $\{X_i, \mathfrak{F}_i, i \in I\}$ is a martingale.

By $L_p(\Omega, \mathfrak{F}, P, \mathfrak{X})$, $1 \leq p \leq \infty$, we shall denote the class of those \mathfrak{X} -valued functions $X(\omega)$ which are strongly-measurable w.r.t. \mathfrak{F} and such that $||X(\omega)||$ is in L_p . If we define the "norm" of $X(\omega) \in L_p(\Omega, \mathfrak{F}, P, \mathfrak{X})$, denoted by $[X]_p$, to be the L_p norm of $||X(\omega)||$, then, as is well-known, $L_p(\Omega, \mathfrak{F}, P, \mathfrak{X})$ becomes a Banach space.

A set of complex-valued r.v.'s $X_t(\omega)$, $t \in T$ will be said to be "restrictedly uniformly integrable" if for any $\epsilon > 0$ there exists a $\delta > 0$ such that

¹ Research done under a grant from the National Science Foundation.

² I am indebted to Professor Doob for having suggested this terminology in one of his letters to me. I also thank him for pointing out to me that our Theorem 1 had been obtained by Mrs. Moy before, and that Mr. Scalora obtained results somewhat similar to ours in his doctoral dissertation.

$$\int_{A} |X_{t}(\omega)| dP < \epsilon,$$

wherever $P(A) < \delta$. Notice that for general probability measures (e.g. those measures which contain atoms) restrictedly uniform integrability is a weaker condition than ordinary uniform integrability.

2. We shall state our main results, deferring the proofs to a later publication.

THEOREM 1. For any Bochner-integrable r.v. X and Borel-field \mathfrak{F} $E(X|\mathfrak{F})$ exists and is unique except for sets of P-measure 0.

In passing we state that the usual properties of a Bochner-integral are valid for $E(X|\mathfrak{F})$ e.g.

$$||X|| \le E(||X|| \mid \mathfrak{F})$$
 a.e., etc.

THEOREM 2. Let $\{X_n, \mathfrak{F}_n, n \geq 1\}$ be a \mathfrak{X} -valued martingale such that

$$X_n = E(Z \mid \mathfrak{F}_n), \qquad n \geq 1,$$

where

$$Z \in L_p(\Omega, \mathfrak{B}, P, \mathfrak{X}), \quad 1 \leq p < \infty, \mathfrak{X} \text{ arbitrary.}$$

Then

$$\lim_{n\to\infty} [X_n - X_{\infty}]_p = 0$$

where $X_{\infty} = E(Z \mid \mathfrak{F}_{\infty})$ and

$$\mathfrak{F}_{\infty} = Borel\text{-field generated by } \bigcup_{n=1}^{\infty} \mathfrak{F}_n.$$

THEOREM 3. Let $\{X_n, \mathfrak{F}_n, n \leq -1\}$ be a \mathfrak{X} -valued martingale, \mathfrak{X} -arbitrary, and let $X_{-1} \in L_p(\Omega, \mathfrak{G}, P, \mathfrak{X})$ $1 \leq p \leq \infty$. Then

(2)
$$\lim_{n\to\infty} \left[X_{-\infty} - X_{-n} \right]_p = 0$$

where

$$X_{-\infty} = E(X_{-1} \mid \mathfrak{F}_{-\infty})$$

and

$$\mathfrak{F}_{-\infty} = \bigcap_{n=1}^{\infty} \mathfrak{F}_{-n}.$$

THEOREM 4. Let \mathfrak{X} be a reflexive Banach space and let $\{X_n, \mathfrak{F}_n, n \geq 1\}$ be a \mathfrak{X} -valued martingale such that

$$X_n \in L_n(\Omega, \mathfrak{G}, P, \mathfrak{X})$$
 $n \ge 1, 1$

and

$$[X_n]_p < C.$$

Then there exists $X_{\infty} \in L_p(\Omega, \mathfrak{G}, P, \mathfrak{X})$ such that

$$\lim_{n\to\infty} [X_n - X_\infty]_p = 0$$

and

$$X_n = E(X_{\infty} \mid \mathfrak{F}_n).$$

THEOREM 5. Let $\{X_n, \mathfrak{F}_n, n \geq 1\}$ be a \mathfrak{X} -valued martingale where \mathfrak{X} is reflexive and let $||X_n||$, $n \geq 1$ be restrictedly uniformly integrable. Then there is a Bochner-integrable r.v. X_{∞} such that

(4)
$$\lim_{n\to\infty} [X_n - X_\infty]_1 = 0.$$

THEOREM 6. Theorem 2 remains valid if we replace (1) by

$$\lim_{n\to\infty} X_n = X_\infty a.e.$$

THEOREM 7. Theorem 3 remains valid if we replace (2) by

$$\lim_{n\to\infty} X_{-n} = X_{-\infty} \ a.e.$$

THEOREM 8. Theorems 4 and 5 remain valid if we replace (3) and (4) by

$$\lim_{n\to\infty} X_n = X_\infty \ a.e.$$

THEOREM 9. Let $\{X_n, \mathfrak{F}_n, n \geq 1\}$ be a X-valued martingale where X is reflexive and let

$$E\bigg(\sup_{n\geq 0}\big\|X_n-X_{n-1}\big\|\bigg)<+\infty,\qquad X_0\equiv 0.$$

Then

$$\lim_{n\to\infty} X_n(\omega) \text{ exists whenever}$$

$$\omega \in \left\{ \omega : \sup_n \|X_n(\omega)\| < + \infty \right\}.$$

THEOREM 10. Let $\{X_n, \mathfrak{F}_n, n \geq 1\}$ be a \mathfrak{X} -valued martingale where \mathfrak{X} is reflexive. If $E(||X_n||) < C$, independent of n, then there exists a Bochner-integrable $r.v. X_{\infty}(\omega)$ such that $X_n(\omega)$ converges weakly to $X_{\infty}(\omega)$ a.e.

THEOREM 11. If \mathfrak{X} is not reflexive then none of the Theorems 4, 5, 8, 9, and 10 are valid.

For the last theorem we consider $(\Omega, \mathfrak{B}, P)$ on the open unit interval with Lebesgue measure on Borel subsets, and consider \mathfrak{X} to be the Banach space of all Lebesgue integrable functions on (0, 1). Let $\epsilon_{\lambda}(t) \in \mathfrak{X}$, $0 < \lambda < 1$ be as follows:

$$\epsilon_{\lambda}(t) = 1,$$
 $0 < t \le \lambda,$
= 0, $\lambda < t < 1.$

Let \mathfrak{F}_n be the Borel-field generated by intervals

$$\left(\frac{m}{2^n}, \frac{m+1}{2^n}\right)$$

 $0 \le m \le 2^n - 1$, $n \ge 1$. Define

$$X_n(\omega) = 2^n \left\{ \epsilon_{(m+1)/2^n} - \epsilon_{m/2^n} \right\}, \qquad \omega \in \left(\frac{m}{2^n}, \frac{m+1}{2^n} \right),$$

= 0, elsewhere.

Then

$$\{X_n,\mathfrak{F}_n,\,n\geq 1\}$$

is a martingale and

$$\begin{aligned} & \left\| X_n(\omega) \right\| \equiv 1 \text{ a.e.} \\ & E(\left\| X_n(\omega) \right\|^p) = 1, \qquad n \ge 1, \\ & E\left(\sup_{n \ge 0} \left\| X_n(\omega) - X_{n-1}(\omega) \right\| \right) = 1, \qquad X_0 \equiv 0. \end{aligned}$$

But if $\omega \neq p/2^q$ then $X_n(\omega)$ does not go to any limit either weakly or strongly. Actually no subsequence $X_{n_k}(\omega)$ converges weakly or strongly if $\omega \neq p/2^q$. Hence $X_n(\omega)$ does not converge in $L_1(\Omega, \mathfrak{B}, P, \mathfrak{X})$ -mean either.

MICHIGAN STATE UNIVERSITY