ON DIFFERENTIABLE FUNCTIONS

BY FU CHENG HSIANG

Communicated by S. Bochner, May 25, 1960

1. Let f(x) be a real function defined over the closed interval [a, b] and differentiable at each point of the interval. The following is a well-known classical theorem.

DARBOUX'S THEOREM. If ξ , $\eta \in [a, b]$ and $f'(\xi) = c$, $f'(\eta) = d$ and c < d, then, if c < k < d, there exists at least one point ζ lying between ξ and η such that $f'(\zeta) = k$.

Recently in 1947, Clarkson [1] developed the above property into the following important theorem concerning the behavior of the derivative f'(x).

CLARKSON'S THEOREM. Let α , β with $\alpha < \beta$ be any two real numbers and let us denote the aggregate of points in [a, b] such that $\alpha < f'(x) < \beta$ by

$$E_{\alpha\beta} = E(x; \alpha < f'(x) < \beta);$$

then $E_{\alpha\beta}$ is either void or $\mathfrak{M}(E_{\alpha\beta}) > 0$, where $\mathfrak{M}(E)$ is the Lebesgue measure of the set E.

2. In this note, we intend to give a more detailed description of $E_{\alpha\beta}$. We prove the following

THEOREM. The set $E_{\alpha\beta}$ gives rise to a set of nonoverlapping and non-abutting open sub-intervals $\{I_i\}$ in the space [a, b] and a closed set G, which is the complementary set of $\{I_i\}$ with respect to [a, b], such that $E_{\alpha\beta}$ is void in each I_i and metrically dense everywhere in G.

3. We first show that $E_{\alpha\beta}$ is metrically dense in itself. For, take any point P of $E_{\alpha\beta}$ and any neighborhood U_P containing P as its interior point, since $U_P \cap E_{\alpha\beta}$ is not void, from Clarkson's theorem, $\mathfrak{M}(U_P \cap E_{\alpha\beta}) > 0$. Thus, each point of $E_{\alpha\beta}$ is a limiting point of the set. I.e., $E_{\alpha\beta} \subseteq E'_{\alpha\beta}$. Moreover, for each point $P \subseteq CE'_{\alpha\beta}$, it is always possible for us to construct a largest open sub-interval I_P relative to the space [a, b] such that it contains P as its interior point and has its two end points belonging to the set $E'_{\alpha\beta}$, and such that all of its interior points are the points of $CE'_{\alpha\beta}$. Thus, $E_{\alpha\beta}$ is void in each I_P , since $E_{\alpha\beta} \subseteq E'_{\alpha\beta}$. Hence, we see that, corresponding to the set

¹ In case $a \in CE'_{\alpha\beta}$ (similarly for b), the corresponding U_a takes a as one of its end points and the other end point of U_a is of course a point of $E'_{\alpha\beta}$.

 $CE'_{\alpha\beta}$, there exists a set of open sub-intervals $\{I_P\}$, in each of which $E_{\alpha\beta}$ is void. Moreover, for any two different points P and P' of $CE'_{\alpha\beta}$, we have $I_P \equiv I_{P'}$ or $I_P \cap I_{P'} = 0$. For, otherwise, there should be an interior point of I_P (or $I_{P'}$), which is also a point of the set $E'_{\alpha\beta}$. This contradicts the mode of construction for $\{I_P\}$. Further, by the same reason, I_P and $I_{P'}$ can not be abutting. Therefore, the set of the open sub-intervals $\{I_P\}$ corresponding to the set $CE'_{\alpha\beta}$ is a countable set of nonoverlapping and nonabutting open sub-intervals $\{I_i\}$ in the space [a, b]. Let the complementary set of $\{I_i\}$ with respect to [a, b] be G. Then G is closed. And $E_{\alpha\beta}$ is metrically dense everywhere in G, since, for any point $Q \subseteq G$, $\mathfrak{M}(U_Q \cap E_{\alpha\beta}) > 0$ is satisfied for any arbitrary neighborhood of Q. This proves the theorem.

REFERENCE

1. J. A. Clarkson, A property of derivatives, Bull. Amer. Math. Soc. vol. 53 (1947) pp. 124-125.

NATIONAL TAIWAN UNIVERSITY

A q-BINOMIAL COEFFICIENT SERIES TRANSFORM

BY H. W. GOULD

Communicated by R. P. Boas, June 11, 1960

Following a standard notation [1; 4; 5] we define the q-binomial coefficients by means of

or sometimes more conveniently by the notation

where

$$[x]_n = [x][x-1] \cdot \cdot \cdot [x-n+1],$$

$$[x] = (q^x - 1)/(q-1),$$

$$[n]! = [n]_n, \qquad [0]! = [x]_0 = 1, \qquad \begin{bmatrix} x \\ 0 \end{bmatrix} = 1.$$