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1. Introduction. The present considerations arose from the follow­
ing problem: let ££j3N — N; is /3N — N— {p} C*-embedded in 
jSN-N—i.e. , is j 3 ( / 3 N - N - {p}) equal to / 3 N - N ? 3 We prove, as­
suming the continuum hypothesis (designated by [CH]), that the 
answer is negative. More generally, see Theorem 4.6. The correspond­
ing question for {5Dy where D is any discrete space, is discussed in §5. 
The proofs depend upon results about /^-spaces. We also prove [CH] 
that all open subsets of /3R — R are F-spaces and that all open subsets 
of /3N —N are zero-dimensional ^-spaces. 

2. Background. All spaces considered are assumed to be com­
pletely regular. N is the countably infinite discrete space, R the 
space of reals. C*(X) denotes the ring of all bounded continuous func­
tions from X into R. A zero-set in X is the set Z(f) of zeros of a con­
tinuous function ƒ. A cozero-set is the complement of a zero-set. 
Countable unions of cozero-sets are cozero-sets. A subspace 5 of X 
is C*-embedded in X if every function in C*(S) has a continuous ex­
tension to all of X. I3X denotes the Stone-Cech compactification of 
X, i.e., a compactification of X in which X is C*-embedded. 

The main results depend upon properties of F-spaces. Each of the 
following conditions characterizes X as an F-space: every cozero-set 
in X is C*-embedded', any two disjoint cozero-sets are completely sepa­
rated in X (i.e., some function in C*(X) is equal to 0 on one of them 
and 1 on the other). Let 

(2.1) K = fiY— F, where Y is locally compact and a-compact but not 
compact. 

Then K is a compact jP-space without isolated points, and \K\ 
^ e x p exp No. Examples: K = (3N — N, K = f$R — R. For the algebraic 
significance of F-spaces, as well as for proofs of quoted results, see 
[ l ] and [2, Chapter 14]. 

The following two properties of a space X are equivalent: any 
two completely separated sets are contained in complementary open-
and-closed sets; fiX is totally disconnected. We express these condi­
tions by saying that X is zero-dimensional. (For the requisite defini-

1 This research was supported by Air Force Contract AF 18(603)-65. 
2 National Science Foundation fellow. 
8 Symbols and terms are defined in §2. For additional details, see [2]. 
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tion of dimension, see [2, Chapter 16].) If X is zero-dimensional, so 
is any C*-embedded subspace. 

3. Preliminary results. For any space F, vY denotes the set of all 
points p of j3 F such that every zero-set in /3 F that contains p also 
meets F. When i ;F= F, F is said to be realcompact. All (7-compact 
spaces are realcompact [2, Chapter 8] . 

3.1. LEMMA. If Y is locally compact and realcompact, then each zero-
set in j8F— F is tóe closure of its interior. 

REMARK. I t suffices to prove that a nonempty zero-set Z has non­
empty interior-—for if pÇiZ — cl int Z, then some zero-set Z' disjoint 
from int Z contains p, and int(ZP\Z') is empty. 

PROOF. Since F is locally compact, /3F— Fis compact and is there­
fore C*-embedded in /3F; hence Z = Z(ƒ) - F for some /<EC*(j3F). Let 
pÇzZ. Since pQvY, there is a function g in C*(j3F) that vanishes at 
p but nowhere on F. Define fc=|/|+|g|; then pGZ(h)CZ. Let 
Cy») be a sequence of distinct points in F on which A approaches 0. 
Choose disjoint compact neighborhoods Vn of yn such that 
\h(y)—h(yn)\ <l/n for y<E:Vn» I t is easy to see that there exists a 
function wGC*(j3F) that is equal to 1 at each yn and equal to 0 
everywhere on F— \Jn Vn. If q is any point of fiY— F a t which u(q)?*0, 
then every neighborhood of g meets infinitely many of the compact 
sets Vn\ hence h(q) = 0. Thus Z(h) contains the nonvoid open subset 
pY-Y-Z(u) of PY-Y. 

Local compactness is critical : an easy example shows that the con­
clusion of the lemma fails for /3Q — Q (Q = space of rationals). 

3.2. REMARK. If Y is locally compact and realcompact, but not com-
pact, then (3Y-— Y is not basically disconnected—for 3.1 would imply 
that it is a P-space. (See [2] for definitions and for other proofs for 
jSN-N.) 

3.3. Given X, let SQX and pÇîX — S. The main results will be 
formulated in terms of the condition 

(p, S) : There exist a neighborhood V of p and a cozero-set HQS such 
that Sr\V—H has void interior. 

Trivially, (p, S) holds whenever pQcl S; and if S is a cozero-set, 
then (p, S) holds for every pQS. 

3.4. LEMMA. Let F be a compact set in X such that (pt X — F) holds 
for all p<E.F. Then int ZQ.F<Z.Z for some zero-set Z. 

PROOF. There exist a finite open cover {Vi, • • • , Vn} of F and 
zero-sets Zi, • • • , Zn containing F such that int Zk — FCX— Vu. Let 
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Zo — Ok Zk'> then ZQ is a zero-set containing F and intZo — FQ.X 
— Ufc VkC.X — F, so that c l( intZ 0 — F) does not meet F. Since F is 
compact, it is contained in a zero-set Z' disjoint from int ZQ — F (see, 
e.g., [2, 3.11]). This implies that i n t (Zo f \Z ' )CFCZ 0 r \Z ' . 

3.S. THEOREM. Le/ X be an F-space, and let S<ZX and pQcl S — S. 
If Sr\ V is open for some neighborhood V of p, and if {p, S) holds, 
then S is C*-embedded in S\J{p}. 

PROOF. There exist a neighborhood V of p and a cozero-set HC.S 
such that Sr\V is open and is disjoint from int(X — H). Given 
fGC*(S), let g<EC*(H\j{p}) be an extension o f / | i J (see §2). Define 
h on 5 U {p} to agree with ƒ on 5 and with g at p. Since HC\ V is 
dense in {S\J\p\)r\V, h is a continuous extension of/. 

4. The main results. 

4.1. THEOREM. Let X be an F-space and let SC.X be a union of Ni 
cozero-sets Sa {in X). Then (a) 5 is an F-space; (b) if X is zero-
dimensional, so is S; (c) if GQS and G H 5 a is a cozero-set in S {for 
each a), then G is C*-embedded in S. 

PROOF, (C). We may assume that 5, = Ua<Wl5'a and that SoC*Si 
C • • • . Notice that every 5$ is an .F-space. Let g<EC*{G) be given. 
Put gs = g| GC\S^. Given a<ooi, assume that g$ has been extended to 
s$£C*0Sy, for each %<a, and that S o O i C • • • . The function 
U$<a s^\Jga is well defined and continuous on the cozero-set U <̂« $s 
\J{Gr\Sa) in the F-space Sa; hence it has an extension to a function 
5aGC*(5a). Finally, Ua<coi sa is a continuous extension of g to all of S. 

(a) If G is a cozero-set in S, then by (c), G is C*-embedded. 
(b) Completely separated sets in 5 are contained in disjoint cozero-

sets A and B in S. Let gÇzC*{A\JB) be equal to 0 on A and to 1 on 
B. Note that every Sa is zero-dimensional. In the proof of (c), (with 
G = A\JB), add to the induction hypothesis that U$<a s$ is two-
valued; then sa may be taken to be two-valued. 

4.2. COROLLARY. [CH]. All open subsets of /3R — R are F-spaces. 
All open subsets of j8N — N are zero-dimensional F-spaces. 

PROOF. Both /3R — R and /3N — N have just exp N0 zero-sets. 

4.3. THEOREM. [CH]. Let X be an F-space having fust exp fr$0 zero-
sets. Let S be open and let pGel 5 — S, and suppose that {p, S) fails. 
Then (a) S is not C*-embedded in S U {p} ; (b) | j35 — S\ è e x p exp fc$i; 
(c) if X is zero-dimensional, there is a two-valued function in C*(S) 
that has no continuous extension to p. 

PROOF, (a). Let (S$)$<«i be a family of cozero-sets in X whose 
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union is S, and let (Fs)$<Wl be a base of zero-set-neighborhoods of p. 
Inductively, for each ce<o;i, assume that cozero-sets A$ and B$, con­
tained in S, have been defined for all %<a. Because (p, S) fails, we 
can choose disjoint, nonempty cozero-sets Aa and Ba contained in 

SC\Va- U (At\J Bk\J Sd-

Define ^4=Ua<wl^4a, B = \Ja<(aiBa, and G = A\JB. By construction, 
for each £<coi, GP\S$ is the cozero-set Uag$ (AaUBa)r\S^. By 4.1(c), 
G is C*-embedded in 5. But A and B are complementary open sets 
in G and each meets every neighborhood of p ; therefore G is not C*-
embedded in G U J ^ } . I t follows that S is not C*-embedded in 
SV{p}. 

(c) This now follows from 4.1(b). 
(b) Since | S| ^ e x p e x p ^ o (every point being an intersection of 

zero-sets), it is sufficient to show that |/35| ^ e x p exp Ni. Because G 
is C*-embedded in 5, | j3S\ ^ | (JG\. Clearly, G contains a C*-embedded 
copy of the discrete space D of cardinal Kx; so |/3G| è |]3£>|. Finally, 
|j8Z)| =exp exp fc$i, as is well known. 

4.4. COROLLARY [CH]. Let X be an F-space with just exp fc$0 zero-
sets t and let SQX be open and £ £ c l S — S. Then S is C*-embedded in 
S\j{p} if and only if (p, S) holds. 

PROOF. 3.5 and 4.3(a). 
4.5. QUESTION. Suppose that X is zero-dimensional and that a 

dense subset S of X is not C*-embedded in X; does there then exist 
a two-valued function in C*(S) with no continuous extension to XI 
It is easy to see that the answer is "yes" in case 5 itself is zero-
dimensional. 

4.6. THEOREM [CH]. Let K be a compact F-space of the form (2.1) 
that has just exp fc$0 zero-sets. (E.g., i£ = /?N —N or i£ = j8R —R.) Then: 

(a) No proper dense subset is C*-embedded—i.e., the equation 
(3X = K has the unique solution X~K. 

(b) The following are equivalent f or an open set S: 
(i) 5 is C*-embedded in K. 
(ii) 5 is a cozero-set. 
(iii) (p, S) holds for all pGK-S. 

(c) If S is open but is not a cozero-set, then |/3S — S\ ^ exp exp fc$i. 
(d) If K is totally disconnected (e.g., i£ = /3N — N), and if S is open 

but is not a cozero-set, then there is a two-valued f unction in C*(S) that 
has no continuous extension to all of K. 

PROOF. We prove first that (iii) implies (ii) : by 3.1, cl int Z = Z for 
every zero-set Z in K; hence (iii) and 3.4 imply that K — S is a zero-
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set. Conclusions (b), (c), and (d) now follow from 4.3. Since no point 
of K is isolated, 3.1 shows that no point is a zero-set; by (b), the 
complement of a point is not C*-embedded, and this implies (a). 

4.7. REMARK. Let X be a compact F-space; if SCX and \X — S\ 
<exp exp fc^Of then S is pseudocompact (i.e., every continuous function 
is bounded). For if 5 admits an unbounded function, then S contains 
N as a closed subset. Now, N is C*-embedded in X [2, 14N] and so 
c l x N = /3N. B u t X - S D / 3 N - N a n d | / 3 N - N | = e x p e x p N 0 . 

5. The space /3Z> — D f or (uncountable) discrete D. If A CD and 
pÇzclpD A— Dy then clA—D is an open-and-closed neighborhood of 
p in fiD—D; these sets form a base at p in fiD—D. Let Eo be the set 
of points in fiD—D in the closures of countable subsets of D, E 
— fiD—D —E§, Ei the set of points of E in the closures of subsets of 
D of cardinal fc$i. Then E0 is countably compact and is open and dense 
in fiD — D. Every compact subset of E o has an open neighborhood in 
Eo homeomorphic with fiN — N. Since D is an E-space, so are (3D and 
its compact subspace E. 

5.1. THEOREM [CH]. If pGE0l then fiD-D-{p) is not ^-em­
bedded in fiD—D. 

PROOF, p has an open neighborhood in Eo homeomorphic with 
]8N —N, and 4.6(a) applies locally. 

5.2. THEOREM. If S is an open subset of E0, then either S has compact 
closure in E0 or S has infinitely many limit points in E\. 

PROOF. Let 91 be a maximal family of disjoint, countably infinite 
subsets N of D for which cl N — DC.S. Since 5 is open, c l U ^ O ^ . 
If 91 is countable, then cl U9fl — D C E 0 . If 91 is uncountable, it has a 
subfamily 91' of cardinal fc$i. Let $ be the filter on D of all sets that 
contain all but finitely many points of N for all but countably many 
N<EL 91'. Clearly, ^ is contained in infinitely many (in fact, exp exp fc$i) 
ultrafilters "U. For each such % consider p = lim cll. Because the 
members of 91' are disjoint, every member of °U is uncountable; hence 
pCE. Since 11 contains the set U9l' of cardinal \Ai, £ £ E i . 

5.3. LEMMA (HENRIKSEN) . If p<EE—vD,4 then E— {p} is ^-em­
bedded in E. 

PROOF.5 Since p^ivD, some function ƒ G C*(]8JD) vanishes at p but 

4 I t is known that if \D\ is smaller than the first strongly inaccessible cardinal, 
then vD = D (see §3). 

6 Due to Henriksen and Jerison; Henriksen's original proof was based on some 
results in the theory of lattice-ordered rings. 
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nowhere on D. Every neighborhood of a point of E meets D in an 
uncountable set on which | / | is bounded away from zero. Hence 
E — Z{f) is a dense cozero-set in the e space E, and therefore the 
intermediate subspace E— {p} is C*-embedded in E. 

5.4. THEOREM (ISBELL-JERISON). Ifp£:E—vD,4thenl3D--D — {p} 
is C*-embedded in /JD — D. 

PROOF. Given g £ C* (fiD — D — {p} ), consider its restriction 
f—g\E—{p}. By Henriksen's lemma, ƒ can be extended continuously 
to p—say with the value 0 at p. I t suffices to show that |g | stays 
small near p. Given €>0, let V be an open-and-closed neighborhood 
of p such that \f(q) | <e for all g £ VC\E, Let 5 be the set of all points 
xÇzVr\Eç> such that \g{x)\ >e ; then cl S meets E in at most the 
single point p. To show that p^cX S, one may observe6 that S is 
open and apply 5.2. Thus, \g(x)\ ^e on the neighborhood V—clS 
of p. 

5.5. QUESTION. Is E0 C*-embedded in /3.D — P ? If so, then E0 is a 
zero-dimensional 7^-space. Note that 4.1 and [CH] yield the latter 
for the case \D\ =fc$i. If Eo is not C*-embedded in /3D—D, then it is 
not C*-embedded in D U E 0 ; this would imply that D U £ 0 is not a 
normal space. In the case | D \ =fc$i (at least), it would also imply, by 
4.5 and [CH], that some two-valued function in C*(E0) cannot be 
extended continuously to /3D. 

We remark that the problem of extending two-valued functions 
from Eo (for arbitrary D) can be formulated in the following way. 
Let (P be the Boolean algebra of all subsets of D, Q the subring of all 
countable subsets, and $ the ideal of all finite subsets. Let A be the 
set of all endomorphisms X of Q/5 that satisfy (i):X(x)C#, and 
(ii):X(X(x)) =X(x). Then the following are equivalent: every two-
valued function in C*(Eo) has a continuous extension to all of (3D; 
every XGA can be extended to (?/$ so as to satisfy (i) and (ii). 
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