EXTENSION OF CONTINUOUS FUNCTIONS IN β N

BY N. J. FINE¹ AND L. GILLMAN²

Communicated by Deane Montgomery, June 4, 1960

- 1. Introduction. The present considerations arose from the following problem: let $p \in \beta N N$; is $\beta N N \{p\}$ C^* -embedded in $\beta N N$ —i.e., is $\beta(\beta N N \{p\})$ equal to $\beta N N$? We prove, assuming the continuum hypothesis (designated by [CH]), that the answer is negative. More generally, see Theorem 4.6. The corresponding question for βD , where D is any discrete space, is discussed in §5. The proofs depend upon results about F-spaces. We also prove [CH] that all open subsets of $\beta N N$ are zero-dimensional F-spaces.
- 2. Background. All spaces considered are assumed to be completely regular. N is the countably infinite discrete space, R the space of reals. $C^*(X)$ denotes the ring of all bounded continuous functions from X into R. A zero-set in X is the set Z(f) of zeros of a continuous function f. A cozero-set is the complement of a zero-set. Countable unions of cozero-sets are cozero-sets. A subspace S of X is C^* -embedded in X if every function in $C^*(S)$ has a continuous extension to all of X. βX denotes the Stone-Čech compactification of X, i.e., a compactification of X in which X is C^* -embedded.

The main results depend upon properties of F-spaces. Each of the following conditions characterizes X as an F-space: every cozero-set in X is C^* -embedded; any two disjoint cozero-sets are completely separated in X (i.e., some function in $C^*(X)$ is equal to 0 on one of them and 1 on the other). Let

(2.1) $K = \beta Y - Y$, where Y is locally compact and σ -compact but not compact.

Then K is a compact F-space without isolated points, and $|K| \ge \exp \exp \aleph_0$. Examples: $K = \beta N - N$, $K = \beta R - R$. For the algebraic significance of F-spaces, as well as for proofs of quoted results, see [1] and [2, Chapter 14].

The following two properties of a space X are equivalent: any two completely separated sets are contained in complementary openand-closed sets; βX is totally disconnected. We express these conditions by saying that X is zero-dimensional. (For the requisite defini-

¹ This research was supported by Air Force Contract AF 18(603)-65.

² National Science Foundation fellow.

⁸ Symbols and terms are defined in §2. For additional details, see [2].

tion of dimension, see [2, Chapter 16].) If X is zero-dimensional, so is any C^* -embedded subspace.

- 3. Preliminary results. For any space Y, vY denotes the set of all points p of βY such that every zero-set in βY that contains p also meets Y. When vY = Y, Y is said to be realcompact. All σ -compact spaces are realcompact [2, Chapter 8].
- 3.1. Lemma. If Y is locally compact and realcompact, then each zeroset in $\beta Y - Y$ is the closure of its interior.

REMARK. It suffices to prove that a nonempty zero-set Z has non-empty interior—for if $p \in Z$ —cl int Z, then some zero-set Z' disjoint from int Z contains p, and int($Z \cap Z'$) is empty.

PROOF. Since Y is locally compact, $\beta Y - Y$ is compact and is therefore C^* -embedded in βY ; hence $Z = \mathbf{Z}(f) - Y$ for some $f \in C^*(\beta Y)$. Let $p \in \mathbb{Z}$. Since $p \in vY$, there is a function g in $C^*(\beta Y)$ that vanishes at p but nowhere on Y. Define h = |f| + |g|; then $p \in \mathbf{Z}(h) \subset \mathbb{Z}$. Let (y_n) be a sequence of distinct points in Y on which h approaches 0. Choose disjoint compact neighborhoods V_n of y_n such that $|h(y) - h(y_n)| < 1/n$ for $y \in V_n$. It is easy to see that there exists a function $u \in C^*(\beta Y)$ that is equal to 1 at each y_n and equal to 0 everywhere on $Y - \bigcup_n V_n$. If g is any point of g Y - Y at which $u(q) \neq 0$, then every neighborhood of q meets infinitely many of the compact sets V_n ; hence h(q) = 0. Thus $\mathbf{Z}(h)$ contains the nonvoid open subset $g Y - Y - \mathbf{Z}(u)$ of g Y - Y.

Local compactness is critical: an easy example shows that the conclusion of the lemma fails for $\beta Q - Q$ (Q = space of rationals).

- 3.2. REMARK. If Y is locally compact and realcompact, but not compact, then $\beta Y Y$ is not basically disconnected—for 3.1 would imply that it is a P-space. (See [2] for definitions and for other proofs for $\beta N N$.)
- 3.3. Given X, let $S \subset X$ and $p \in X S$. The main results will be formulated in terms of the condition
 - (p, S): There exist a neighborhood V of p and a cozero-set $H \subset S$ such that $S \cap V H$ has void interior.

Trivially, (p, S) holds whenever $p \in Cl S$; and if S is a cozero-set, then (p, S) holds for every $p \in S$.

3.4. Lemma. Let F be a compact set in X such that (p, X-F) holds for all $p \in F$. Then int $Z \subset F \subset Z$ for some zero-set Z.

PROOF. There exist a finite open cover $\{V_1, \dots, V_n\}$ of F and zero-sets Z_1, \dots, Z_n containing F such that int $Z_k - F \subset X - V_k$. Let

- $Z_0 = \bigcap_k Z_k$; then Z_0 is a zero-set containing F and int $Z_0 F \subset X$ $-\bigcup_k V_k \subset X F$, so that $\operatorname{cl}(\operatorname{int} Z_0 F)$ does not meet F. Since F is compact, it is contained in a zero-set Z' disjoint from int $Z_0 F$ (see, e.g., [2, 3.11]). This implies that $\operatorname{int}(Z_0 \cap Z') \subset F \subset Z_0 \cap Z'$.
- 3.5. THEOREM. Let X be an F-space, and let $S \subset X$ and $p \in cl\ S S$. If $S \cap V$ is open for some neighborhood V of p, and if (p, S) holds, then S is C*-embedded in $S \cup \{p\}$.

PROOF. There exist a neighborhood V of p and a cozero-set $H \subset S$ such that $S \cap V$ is open and is disjoint from $\operatorname{int}(X - H)$. Given $f \in C^*(S)$, let $g \in C^*(H \cup \{p\})$ be an extension of $f \mid H$ (see §2). Define h on $S \cup \{p\}$ to agree with f on S and with g at p. Since $H \cap V$ is dense in $(S \cup \{p\}) \cap V$, h is a continuous extension of f.

4. The main results.

- 4.1. THEOREM. Let X be an F-space and let $S \subset X$ be a union of \S_1 cozero-sets S_{α} (in X). Then (a) S is an F-space; (b) if X is zero-dimensional, so is S; (c) if $G \subset S$ and $G \cap S_{\alpha}$ is a cozero-set in S (for each α), then G is C*-embedded in S.
- PROOF. (c). We may assume that $S = \bigcup_{\alpha < \omega_1} S_\alpha$ and that $S_0 \subset S_1 \subset \cdots$. Notice that every S_ξ is an F-space. Let $g \in C^*(G)$ be given. Put $g_\xi = g \mid G \cap S_\xi$. Given $\alpha < \omega_1$, assume that g_ξ has been extended to $s_\xi \in C^*(S_\xi)$, for each $\xi < \alpha$, and that $s_0 \subset s_1 \subset \cdots$. The function $\bigcup_{\xi < \alpha} s_\xi \bigcup g_\alpha$ is well defined and continuous on the cozero-set $\bigcup_{\xi < \alpha} S_\xi \cup (G \cap S_\alpha)$ in the F-space S_α ; hence it has an extension to a function $s_\alpha \in C^*(S_\alpha)$. Finally, $\bigcup_{\alpha < \omega_1} s_\alpha$ is a continuous extension of g to all of S.
 - (a) If G is a cozero-set in S, then by (c), G is C^* -embedded.
- (b) Completely separated sets in S are contained in disjoint cozerosets A and B in S. Let $g \in C^*(A \cup B)$ be equal to 0 on A and to 1 on B. Note that every S_α is zero-dimensional. In the proof of (c), (with $G = A \cup B$), add to the induction hypothesis that $\bigcup_{\xi < \alpha} s_{\xi}$ is two-valued; then s_α may be taken to be two-valued.
- 4.2. COROLLARY. [CH]. All open subsets of $\beta \mathbf{R} \mathbf{R}$ are F-spaces. All open subsets of $\beta \mathbf{N} \mathbf{N}$ are zero-dimensional F-spaces.

PROOF. Both $\beta \mathbf{R} - \mathbf{R}$ and $\beta \mathbf{N} - \mathbf{N}$ have just exp \aleph_0 zero-sets.

- 4.3. THEOREM. [CH]. Let X be an F-space having just $\exp \aleph_0$ zerosets. Let S be open and let $p \in \operatorname{cl} S S$, and suppose that (p, S) fails. Then (a) S is not C*-embedded in $S \cup \{p\}$; (b) $|\beta S S| \ge \exp \exp \aleph_1$; (c) if X is zero-dimensional, there is a two-valued function in C*(S) that has no continuous extension to p.
 - PROOF. (a). Let $(S_{\xi})_{\xi<\omega_1}$ be a family of cozero-sets in X whose

union is S, and let $(V_{\xi})_{\xi<\omega_1}$ be a base of zero-set-neighborhoods of p. Inductively, for each $\alpha<\omega_1$, assume that cozero-sets A_{ξ} and B_{ξ} , contained in S, have been defined for all $\xi<\alpha$. Because (p, S) fails, we can choose disjoint, nonempty cozero-sets A_{α} and B_{α} contained in

$$S \cap V_{\alpha} - \bigcup_{\xi < \alpha} (A_{\xi} \cup B_{\xi} \cup S_{\xi}).$$

Define $A = \bigcup_{\alpha < \omega_1} A_{\alpha}$, $B = \bigcup_{\alpha < \omega_1} B_{\alpha}$, and $G = A \cup B$. By construction, for each $\xi < \omega_1$, $G \cap S_{\xi}$ is the cozero-set $\bigcup_{\alpha \le \xi} (A_{\alpha} \cup B_{\alpha}) \cap S_{\xi}$. By 4.1(c), G is C^* -embedded in S. But A and B are complementary open sets in G and each meets every neighborhood of p; therefore G is not C^* -embedded in $G \cup \{p\}$. It follows that S is not C^* -embedded in $S \cup \{p\}$.

- (c) This now follows from 4.1(b).
- (b) Since $|S| \le \exp \exp \aleph_0$ (every point being an intersection of zero-sets), it is sufficient to show that $|\beta S| \ge \exp \exp \aleph_1$. Because G is C^* -embedded in S, $|\beta S| \ge |\beta G|$. Clearly, G contains a C^* -embedded copy of the discrete space D of cardinal \aleph_1 ; so $|\beta G| \ge |\beta D|$. Finally, $|\beta D| = \exp \exp \aleph_1$, as is well known.
- 4.4. COROLLARY [CH]. Let X be an F-space with just $\exp \aleph_0$ zerosets, and let $S \subset X$ be open and $p \in cl\ S S$. Then S is C*-embedded in $S \cup \{p\}$ if and only if (p, S) holds.

Proof. 3.5 and 4.3(a).

- 4.5. QUESTION. Suppose that X is zero-dimensional and that a dense subset S of X is not C^* -embedded in X; does there then exist a two-valued function in $C^*(S)$ with no continuous extension to X? It is easy to see that the answer is "yes" in case S itself is zero-dimensional.
- 4.6. THEOREM [CH]. Let K be a compact F-space of the form (2.1) that has just $\exp \aleph_0$ zero-sets. (E.g., $K = \beta N N$ or $K = \beta R R$.) Then:
- (a) No proper dense subset is C^* -embedded—i.e., the equation $\beta X = K$ has the unique solution X = K.
 - (b) The following are equivalent for an open set S:
 - (i) S is C*-embedded in K.
 - (ii) S is a cozero-set.
 - (iii) (p, S) holds for all $p \in K S$.
 - (c) If S is open but is not a cozero-set, then $|\beta S S| \ge \exp \exp \aleph_1$.
- (d) If K is totally disconnected (e.g., $K = \beta N N$), and if S is open but is not a cozero-set, then there is a two-valued function in $C^*(S)$ that has no continuous extension to all of K.

PROOF. We prove first that (iii) implies (ii): by 3.1, cl int Z = Z for every zero-set Z in K; hence (iii) and 3.4 imply that K - S is a zero-

set. Conclusions (b), (c), and (d) now follow from 4.3. Since no point of K is isolated, 3.1 shows that no point is a zero-set; by (b), the complement of a point is not C^* -embedded, and this implies (a).

- 4.7. REMARK. Let X be a compact F-space; if $S \subset X$ and $|X-S| < \exp \exp \Re_0$, then S is pseudocompact (i.e., every continuous function is bounded). For if S admits an unbounded function, then S contains **N** as a closed subset. Now, **N** is C^* -embedded in X [2, 14N] and so $\operatorname{cl}_X \mathbf{N} = \beta \mathbf{N}$. But $X S \supset \beta \mathbf{N} \mathbf{N}$ and $|\beta \mathbf{N} \mathbf{N}| = \exp \exp \Re_0$.
- 5. The space $\beta D D$ for (uncountable) discrete D. If $A \subset D$ and $p \in \operatorname{cl}_{\beta D} A D$, then $\operatorname{cl} A D$ is an open-and-closed neighborhood of p in $\beta D D$; these sets form a base at p in $\beta D D$. Let E_0 be the set of points in $\beta D D$ in the closures of countable subsets of D, $E = \beta D D E_0$, E_1 the set of points of E in the closures of subsets of D of cardinal \mathbb{N}_1 . Then E_0 is countably compact and is open and dense in $\beta D D$. Every compact subset of E_0 has an open neighborhood in E_0 homeomorphic with $\beta \mathbf{N} \mathbf{N}$. Since D is an F-space, so are βD and its compact subspace E.
- 5.1. THEOREM [CH]. If $p \in E_0$, then $\beta D D \{p\}$ is not C*-embedded in $\beta D D$.

PROOF. p has an open neighborhood in E_0 homeomorphic with $\beta N - N$, and 4.6(a) applies locally.

5.2. THEOREM. If S is an open subset of E_0 , then either S has compact closure in E_0 or S has infinitely many limit points in E_1 .

PROOF. Let \mathfrak{N} be a maximal family of disjoint, countably infinite subsets N of D for which $\operatorname{cl} N-D\subset S$. Since S is open, $\operatorname{cl} U\mathfrak{N}\supset S$. If \mathfrak{N} is countable, then $\operatorname{cl} U\mathfrak{N}-D\subset E_0$. If \mathfrak{N} is uncountable, it has a subfamily \mathfrak{N}' of cardinal \aleph_1 . Let \mathfrak{F} be the filter on D of all sets that contain all but finitely many points of N for all but countably many $N\subset \mathfrak{N}'$. Clearly, \mathfrak{F} is contained in infinitely many (in fact, $\exp\exp\aleph_1$) ultrafilters \mathfrak{U} . For each such \mathfrak{U} , consider $p=\lim\mathfrak{U}$. Because the members of \mathfrak{N}' are disjoint, every member of \mathfrak{U} is uncountable; hence $p\subset E$. Since \mathfrak{U} contains the set $U\mathfrak{N}'$ of cardinal \aleph_1 , $p\subset E_1$.

5.3. LEMMA (HENRIKSEN). If $p \in E - vD$, then $E - \{p\}$ is C^* -embedded in E.

PROOF.⁵ Since $p \in vD$, some function $f \in C^*(\beta D)$ vanishes at p but

⁴ It is known that if |D| is smaller than the first strongly inaccessible cardinal, then vD = D (see §3).

⁵ Due to Henriksen and Jerison; Henriksen's original proof was based on some results in the theory of lattice-ordered rings.

nowhere on D. Every neighborhood of a point of E meets D in an uncountable set on which |f| is bounded away from zero. Hence $E - \mathbf{Z}(f)$ is a dense cozero-set in the F-space E, and therefore the intermediate subspace $E - \{p\}$ is C^* -embedded in E.

5.4. THEOREM (ISBELL-JERISON). If $p \in E - vD$, then $\beta D - D - \{p\}$ is C^* -embedded in $\beta D - D$.

PROOF. Given $g \in C^*(\beta D - D - \{p\})$, consider its restriction $f = g \mid E - \{p\}$. By Henriksen's lemma, f can be extended continuously to p—say with the value 0 at p. It suffices to show that |g| stays small near p. Given $\epsilon > 0$, let V be an open-and-closed neighborhood of p such that $|f(q)| < \epsilon$ for all $q \in V \cap E$. Let S be the set of all points $x \in V \cap E_0$ such that $|g(x)| > \epsilon$; then cl S meets E in at most the single point p. To show that $p \notin cl S$, one may observe that S is open and apply 5.2. Thus, $|g(x)| \le \epsilon$ on the neighborhood V - cl S of p.

5.5. QUESTION. Is E_0 C*-embedded in $\beta D - D$? If so, then E_0 is a zero-dimensional F-space. Note that 4.1 and [CH] yield the latter for the case $|D| = \aleph_1$. If E_0 is not C*-embedded in $\beta D - D$, then it is not C*-embedded in $D \cup E_0$; this would imply that $D \cup E_0$ is not a normal space. In the case $|D| = \aleph_1$ (at least), it would also imply, by 4.5 and [CH], that some two-valued function in $C^*(E_0)$ cannot be extended continuously to βD .

We remark that the problem of extending two-valued functions from E_0 (for arbitrary D) can be formulated in the following way. Let \mathcal{O} be the Boolean algebra of all subsets of D, \mathcal{O} the subring of all countable subsets, and \mathcal{F} the ideal of all finite subsets. Let Λ be the set of all endomorphisms λ of \mathcal{O}/\mathcal{F} that satisfy (i): $\lambda(x) \subset x$, and (ii): $\lambda(\lambda(x)) = \lambda(x)$. Then the following are equivalent: every two-valued function in $C^*(E_0)$ has a continuous extension to all of βD ; every $\lambda \in \Lambda$ can be extended to \mathcal{O}/\mathcal{F} so as to satisfy (i) and (ii).

REFERENCES

- 1. L. Gillman and M. Henriksen, Rings of continuous functions in which every finitely generated ideal is principal, Trans. Amer. Math. Soc. vol. 82 (1956) pp. 366-391.
- 2. L. Gillman and M. Jerison, Rings of continuous functions, Princeton, Van Nostrand, 1960.

University of Pennsylvania and The Institute for Advanced Study; University of Rochester and The Institute for Advanced Study

⁶ This is a modification of the Isbell-Jerison argument.