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The theorem on differentiability of a monotone function or, what 
is equivalent, on the existence of the tangent at almost all points of 
a rectifiable curve, is one of the most remarkable theorems of mathe­
matics. I t is remarkable because it deals with the simplest and yet 
fundamental notions of analysis. The theorem is deep and it had 
never been guessed before. I t is also remarkable because it repre­
sented a fundamental tool in the rebuilding of analysis in the twen­
tieth century. How has it happened that the theorem had not been 
discovered before? The problem on differentiability occupied mathe­
maticians for something like a century before, first in attempts to 
prove differentiability of continuous functions and later in establish­
ing cases of nondifferentiability. Among those who had been working 
we find the names of Cauchy, Riemann, Weierstrass. How is it that 
monotonicy had never come into consideration? But perhaps it came, 
and without methods of measure the problem was unsolvable? This 
is not true: the theory of measure is not needed for the proof. The 
simplest proof is not based on the theory of measure: it is proved 
that the set of points of a rectifiable curve at which no tangent exists 
can be included in a set of arcs of the curve, of arbitrarily small total 
length, and the set is arrived at without any use of theory of measure. 
The theory of measure was not needed for the proof, but the problem 
could not be set without ideas of measure. Riemann gave an example 
of a monotone function (indefinite integral) for which both the set of 
points of differentiability and the set of points of nondifferentiability 
are everywhere dense. In those days the idea that one of these sets is 
"almost the whole of the interval" and the other "almost empty" 
could not arise. As soon as Lebesgue developed the theory of measure, 
the theorem came as a most beautiful boon of new methods. 

On the basis of L-measure the study of differentiability of con­
tinuous functions reached a completeness in the theorems of Denjoy, 
in the second decade of this century. In the same decade Cara-
théodory introduced methods of linear measure in planes and spaces 
of higher dimensions. Ideas of Carathéodory were developed by 

An address delivered before the Annual meeting of the Society in Chicago on 
January 27, 1960 by invitation of the Committee to Select Hour Speakers for Annual 
and Summer Meetings; received by the editors March 26, 1960. 

353 



354 A. S. BESICOVITCH [September 

Hausdorff, who considered m-dimensional measure in the w-dimen-
sional space for any m^n (integral or not). 

New methods of measure suggested to me a study of the geometry 
of sets of points which has been carried out in three papers on Funda­
mental Geometric Properties of Plane Sets of Points.1 The existence 
of a tangent at points of a rectifiable curve found its analogue in the 
theorem on the existence of a tangent at points of a regular set. Non­
existence was established at points of irregular sets. Just as the 
Lebesgue theorem was concerned with arcs of finite length, I studied 
sets of finite linear measure. 

Among sets of infinite measure stands out the class of sets of (r-finite 
measure. A set E of infinite measure is said to be of (r-finite measure 
if it can be split into an enumerable set of sets of finite measure; e.g., 
a straight line is of (r-finite measure. 

By the nature of measure, one expects that sets of cr-finite measure 
have properties similar to sets of finite measure; and for the com­
pleteness of Lebesgue's theorem an answer to the question "does the 
theorem hold for arcs of cr-ûnite linear measure?" should be given. 

The answer to the question is obviously in the affirmative when 
the arc of (r-finite linear measure can be represented as the sum of an 
enunerable set of arcs of finite length, but this is not a general case: 
an arc may be the sum of an enumerable set of sets of finite measure, 
which need not be arcs. There are arcs of (r-finite measure, whose 
every sub-arc is of infinite length. 

The answer to the question in general has been given in my paper 
On the definition of tangent to sets of oo measure, Proc. Cambridge 
Philos. Soc. vol. 52 (1956). But the proof depends on all fundamental 
properties of linearly measurable sets, including most intrinsic prop­
erties of regular sets and irregular ones. 

I shall start by recalling some definitions and some results on plane 
sets of finite linear measure. 

DEFINITION. Given a plane set E we consider its covering by a set 
U(E, 5) of convex domains of diameter d^8. The linear measure is 
defined by the equation 

A E = lim inf X d. 
3-K) U(E,b) 

COROLLARY 1. For linear sets E, A E coincides with the Lebesgue 
linear measure. 

THEOREM 1. If E is a plane arc, l\E coincides with the length of E) 

whether it is finite or not. 

1 Math. Ann. vol. 98 (1928); vol. 115 (1938); vol. 116 (1939). 
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DEFINITION. The limits of l\{Ec(M, r)}/2r, where c(M, r) is the 
circle with center M and radius r, as r—->0, are called densities (upper, 
lower, the density) of E at M and are denoted DIE, M], P*{ }, 
D{ } . 

COROLLARY 1. If E is a linear set the definition of densities coincides 
with the Lebesgue definition. 

COROLLARY 2. If E is a segment then its density at all interior points 
is 1. 

THEOREM 2. Density of E at almost all points outside E is 0 {that is, 
at all points outside E with the exception of a set of linear measure 0). 

An immediate corollary of Theorem 2 is the Lebesgue Theorem 
on density of linear sets. 

Theorem 2 establishes invariance of densities with respect to the 
operations of addition and subdivision of sets: 

(i) if E = E i + E 2 then at almost all points M of Ei, i= 1, 2, 

D{Ei, M} = D{E,M}, etc. 

(ii) also if AEiE 2 >0 then at almost all points M of EiE2 

D(EhM) = D{E2,M}, etc. 

(iii) given two representations of a set E of cr-finite linear measure 
00 00 

E = 2_j Ei — 2~i EJ' 

by the sums of sets of finite measure, then at almost all points M of 
E, from M<EEh M<EEj follows 

D(Ei, M) = D(Ej, M) etc. 

while for linearly measurable sets on a line the density exists and is 
equal to 0 or 1 at almost all points of the line. In the case of a plane 
set E of finite linear measure we have 

THEOREM 3. At almost all points M of E, 

— < D{E, M\ < i. 
2 ~ ( } ~ 

COROLLARY. When E is a rectifiable curve, then at almost all points of 
E the density exists and is equal to 1. 

DEFINITION. A point M of the set E is said to be a regular point 
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if the density of E at M exists and is equal to 1. Any other point is 
an irregular one. 

DEFINITION. A set E with almost all points regular is called a regu­
lar set. A set E with almost all points irregular is an irregular set. 

Given a set E of finite linear measure, denote by Ex the set of its 
regular points and by E2 of its irregular points. Theorem 2 leads to 
the conclusion that E\ is a regular set and E2 is an irregular set, for 
at almost all points M of Ei(E2) the densities of Ei(E2) coincide with 
the density of E. Thus 

THEOREM 4. Any set of finite linear measure is the sum of a regular 
set and an irregular one. 

The tangent to the set E at a point M, whether belonging to the 
set or not, is defined as follows: 

A line I through M is a tangent at I f to E if (i) D(E, M)>0 and 
(ii) for any pair œ of opposite angles with vertex M, that do not con­
tain the line /, D{EO), M} = 0. 

COROLLARY 1. There may be at most one tangent at M. 

COROLLARY 2. The definition is a generalization of the usual defini­
tion of the tangent to a rectifiable arc. 

COROLLARY 3. Given E = E i + E 2 , at almost all points of Ei(E2) tan­
gents to the sets E and Ei(E2) exist simultaneously and coincide or do 
not exist. Thus: The general study of tangential properties of sets reduces 
to the study of regular sets and irregular ones. 

The result is given by two theorems. 

FUNDAMENTAL THEOREM 1. At almost all points of a regular set the 
tangent exists. 

FUNDAMENTAL THEOREM 2. At almost all points of an irregular set 
E no tangent exists and at almost all points M of the set for any pair co 
of opposite angles with vertex at M 

D(Eœ, M) > 0. 

For the solution of our problem we need the 
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FUNDAMENTAL THEOREM 3. The orthogonal projection of an irregular 
set on almost all directions is of measure 0. 

At this point it is appropriate to introduce Favard's definition of 
linear measure: Favard's linear measure of a set E is the mean value 
of the linear measure of the orthogonal projection of the set on all 
directions. In order that this measure coincide with length when the 
set is a curve it is multiplied by w/2. Then it also coincides with the 
Carathéodory linear measure of all regular sets. The above theorem 
can now be expressed in the following way : 

The Favard measure of an irregular set is 0. Then it follows from 
the above theorems that 

At almost all points, in the Favard sense, the tangent to a set of Cara­
théodory finite linear measure exists. 

In case of sets of infinite measure a new definition of the tangent 
is needed if we want the tangent to characterize some intrinsic 
properties of the set and not to be just a formal notion. The unsuita-
bility of the definition we have been using up to now can be illus­
trated by two examples: let C be the set of concentric circles of 
rational radii < 1 and L be the set of lines ax+by+c = 0 in the co-
ordinate plane, with a, 6, c all rational. For each of the two sets the 
tangent, as defined before, does not exist, because the density of the 
set in any pair co of opposite angles is 00. And yet there are tangential 
properties in the case of each of the two sets. In fact, in the case of 
C the tangent at Af£ C to the circumference containing M is a strong 
claimant to be the tangent to C, and in the case of L the line contain­
ing M (when M belongs to one line only, which is the case with all 
points of L except an enumerable subset) is an equally strong claim­
ant. Consider the basis of the claims. In each case the set contains a 
curve, or a line through M and the claimant touches the curve in 
the case of C and coincides with the line in the case of L. Is then the 
tangent a t M to be defined as the tangent a t M to a subset of finite 
linear measure containing M ? But with this definition in the case of C 
and L every line through M would be a tangent to the set at M. This is 
particularly easy to see in the case of L, for through every point M 
of L passes a curve totally belonging to L and having an arbitrarily 
prescribed tangent a t M. Such curves are polygonal lines with in­
finitely many sides. Yet by the nature of the sets C and L the above 
mentioned claimants remain strong ones, only a different definition 
of a tangent is wanted. However, the above argument shows that 
no useful definition of the tangent at an individual point can be given. 
Therefore the question is to be approached differently. Each of our 
sets is of ^-finite measure, that is, each one can be represented as the 
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union of Ko sets of finite measure. C is defined like that and L can be 
represented in this way by representing each line as a union of finite 
segments. Our claimants are tangents to the members of the union. 
This suggests the following general way of defining the tangents at 
points of a set of cr-finite measure: 

Represent the set E as the union of Ko exclusive subsets of finite 
measure 

E = £ X,. 

For every M(E.E we define Xi containing M. If the tangent at M to 
Xi exists, then by definition it is the tangent to E at M. If the tangent 
to X a t M does not exist we say that the tangent to E at M does not 
exist. Thus we shall get the splitting E = Ef+E" such that the tan­
gent exists and is defined at points of Ef and does not exist at points 
of E". This method makes the existence of the tangent and its direc­
tion dependent on the way of splitting of the set E into subsets of 
finite measure and as it can be seen from the set L considered above 
the splitting of E can be arranged so that at a fixed point the tangent 
has a preassigned direction. But the dependence is not so complete as 
it may look. In fact it is very slight. We have seen that the definition 
of the tangent to a set of finite measure makes the tangential prop­
erties invariant with respect to operations of addition and subdivision 
(just as are density values), that is, if a set E of finite measure is 
equal to X^=i En than at almost all points M of E the tangential 
properties of E coincide with those of En containing M. Let now E 
be a set of cr-finite measure and ]Cn°-i Xn, ]Cm=i Y m be two different 
representations of E as sums of sets of finite measure. Writing Xn 

= X^w=i XnYm, we see that at almost all points M of Xn the tan­
gential properties of Xn coincide with those of Xn Ym containing M. 
This being true for any n we conclude that at almost all points of E 
the tangential properties defined by the subdivision E= ^Xn coin­
cide with the tangential properties defined by the subdivision 
E= ^2n,mXnYm. Similarly the tangential properties defined by the 
subdivision ^Ym coincide with those defined by the subdivision 
2 n . « XnYm and thus 

At almost all points of E the tangential properties defined by any 
pair of subdivisions coincide. 

Given a set E of cr-finite measure and a subdivision E = ^2™ Xn 

into subsets of finite measure we write Xn = Xn -{-Xn', where the 
Xn is the regular component of Xn and X" the irregular one. The 
set lCr=*i X^ is by definition a regular component of E, and the set 
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y^Xn' an irregular one. The set of tangents to Xw' for all n is called 
a tangent set of E. The tangent sets of E, corresponding to two differ­
ent subdivisions, may differ only at a set of measure 0. 

Given an arbitrary subset X of finite measure, at almost all points 
of X at which tangents to X exist they coincide with those of the tangent 
set. Thus any tangent set gives a complete description of tangential 
properties of the set, and if it remains indetermined at a set of points 
of measure 0, it is due not to failure of the method, but to the nature 
of the problem. 

We are now in a position to answer the original question on tan­
gential properties of an arc of infinite length and of cr-finite measure. 
Let E be such an arc and E' and E" its regular and irregular com­
ponents respectively. I t follows from the Fundamental Theorem 3 
that the orthogonal projection of E" on almost all direction is of 
measure 0. A polygonal line AoAi • • • An can be inscribed into £ , so 
that its sides be as small as we please, and their directions be such 
that the orthogonal projection of E" on each of them be of measure 
zero, The arc E is divided into sub arcs ^AiAi+i, i = 0, 1, • • • , n — 1. 
The orthogonal projection of the arc ^A{Ai+i on the chord AiAi+i 
contains the whole of the chord. As the projection of E'^AiAi+i on 
AiAi+i has measure 0 the projection of E'^AiAi+i is of measure 
^ chord AiAi+i. Hence 

A Ef w AiAi+i ^ chord A{Ai+i 

and 

A E' è AoAi • • • Any 

that is, 

A E' = oo. 

Thus the set of points at which the tangent to E exists is of infinite 
measure and the set of points at which it does not exist is projected 
into a set of measure zero on almost all directions, that is, is of Favard 
measure 0: The Lebesgue Theorem: At almost all points of an arc of 
finite length the tangent exists holds for arcs of cr-finite measure with 
the difference that "almost all points" is meant in the sense of Favard 
measure. 
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