## LOOP SPACES OF H-SPACES1

## BY WILLIAM BROWDER

Communicated by Hans Samelson, June 6, 1960

Let Y be an H-space (a space Y with a continuous product  $Y \times Y \to Y$  which has a unit element), Y arcwise connected and simply connected, and let  $X = \Omega Y$ , the space of loops of Y based at the unit. We will prove

THEOREM 1. If  $H^*(X)$  (the singular cohomology ring over the integers) is a finitely generated module over the integers, then X is of the same singular homotopy type as K(G, 1) where G is a free abelian group  $(K(G, 1) = S^1 \times \cdots \times S^1 = \text{the } n\text{-torus}$ , where rank of G = n).

Thus the loop space of an H-space Y is infinite dimensional unless Y = K(G, 2), G free abelian.

The proof depends on Theorem 2 below.

Let p be a prime. Then the cohomology of an H-space Y over  $Z_p$  is a Hopf algebra (see [2]). If  $\psi \colon Y \times Y \to Y$  is the multiplication in Y, then  $\psi \colon H^*(Y; Z_p) \to H^*(Y; Z_p) \otimes H^*(Y; Z_p)$  is the diagonal map of the Hopf algebra, the product being the cup product.

Let A be a Hopf algebra over  $Z_p$ ,  $\psi \colon A \to A \otimes A$  the diagonal map,  $\theta \colon A \otimes A \to A$  the product. An element  $x \in A$  is called primitive if  $\psi(x) = x \otimes 1 + 1 \otimes x$ . An element  $y \in A$  is called decomposable if  $y \in \theta(\overline{A} \otimes \overline{A})$  where  $\overline{A}$  is the subspace of A consisting of positive dimensional elements. Let P(A) denote the primitive elements of A, D(A) the decomposable elements of A, Q(A) = A/D(A). Let  $\xi \colon A \to A$  be defined by  $\xi(x) = x^p$ . Then  $\xi(A)$  is a Hopf subalgebra of A.

We quote a theorem of Milnor and Moore [9].

THEOREM (MILNOR AND MOORE). Let A be an associative, commutative Hopf algebra over  $Z_p$  with  $A_0 = Z_p$ . Then the sequence  $0 \rightarrow P(\xi A) \rightarrow P(A) \rightarrow Q(A)$  is exact.

Thus if  $x \in P(A) \cap D(A)$ , then  $x = u^p$  for some  $u \in A$ .

Let  $\mathcal{O}^i$  denote the *i*th Steenrod operation

 $Sq^i$  denote the *i*th Steenrod square

$$Sq^i: H^m(X; Z_2) \to H^{m+i}(X; Z_2).$$

<sup>&</sup>lt;sup>1</sup> This note was written while the author was a National Science Foundation Postdoctoral Fellow.

THEOREM 2. Let Y be an H-space with  $H^*(Y; Z_p) = P(y_1, \dots, y_n, \dots) = the ring of polynomials over <math>Z_p$  generated by  $y_1, \dots, y_n, \dots$ , with dim  $y_i$  even for all i. Let  $x \in H^{2m}(Y; Z_p)$  be a primitive element. If  $p \neq 2$  and  $m = p^r + k$  with 0 < k < p, and r > 0, then  $O^{p^r+i}(x) \neq 0$  is indecomposable,  $0 \leq i < k$ . If  $p \neq 2$  and 1 < m < p  $O^i(x) \neq 0$  is indecomposable, 0 < i < m. If p = 2, and  $p = 2^{r-1} + 1$  with p = 1, then p = 1 is indecomposable.

PROOF. Since  $H^*(Y; \mathbb{Z}_p)$  is a polynomial ring  $\mathfrak{O}^m(x) = x^p \neq 0$ . Let  $p \neq 2$ ,  $m = p^r + k$ , k < p, r > 1. Then by the Adem relations [7]

$$\mathcal{O}^{pr+k} = k! (\mathcal{O}^1)^k \mathcal{O}^{pr}$$

so that  $\mathcal{O}^{p^r+i}(x)=i!(\mathcal{O}^1)^i\mathcal{O}^{p^r}(x)\neq 0$  for  $0\leq i\leq k< p$ . Now if  $\alpha$  is an element of the Steenrod algebra and Y is an H-space, then  $\alpha(P(H^*(Y;Z_p)))\subseteq P(H^*(Y;Z_p))$  since  $\alpha$  is additive, so that  $\mathcal{O}^{p^r+i}(x)$  is primitive in  $H^*(Y;Z_p)$ . If  $\mathcal{O}^{p^r+i}(x)$  is decomposable then by the theorem of Milnor and Moore  $\mathcal{O}^{p^r+i}(x)=u^p$ . But  $\mathcal{O}^1(\mathcal{O}^{p^r+i})=(i+1)\mathcal{O}^{p^r+i+1}$  so that if i< k  $\mathcal{O}^1(u^p)\neq 0$ . But  $\mathcal{O}^1$  is a derivation by the Product Formula so that  $\mathcal{O}^1(u^p)=pu^{p-1}(\mathcal{O}^1u)=0$  mod p. Hence  $\mathcal{O}^{p^r+i}(x)$  is indecomposable in  $H^*(Y;Z_p)$ .

If 1 < m < p,  $p \ne 2$ , we get from the Adem relations  $\mathcal{O}^m = m!$   $(\mathcal{O}^1)^m$ , and we proceed similarly.

If p=2 and  $m=2^{r-1}+1$  with r>1 we have that  $x^2=Sq^{2^r+2}(x)$  and from the Adem relations

$$Sq^{2^{r}+2} = Sq^{2}Sq^{2^{r}} + Sq^{2^{r}+1}Sq^{1}.$$

Since  $H^*(Y; Z_2)$  is a polynomial ring on even dimensional generators  $Sq^1H^*(Y; Z_2) = 0$ , for  $Sq^1$  changes dimension by 1. Hence  $Sq^{2r+2}(x) = Sq^2Sq^{2r}(x)$  so that  $Sq^{2r}(x) \neq 0$  and is a primitive element. If  $Sq^{2r}(x) = u^2$  then  $Sq^2(u^2) = (Sq^2u)u + (Sq^1u)(Sq^1u) + u(Sq^2u) = 0 \mod 2$ , since  $Sq^1\equiv 0$  in  $H^*(Y; Z_2)$  ( $Sq^2$  is a derivation on  $H^*(Y; Z_2)$ ). Hence  $Sq^{2r}(x)$  is indecomposable. Q.E.D.

One can apply Theorem 2 to compute many Steenrod operations in the stable classical groups, using only the cohomology structure mod p and the fact that the classifying space is an H-space. We will use Theorem 2 to prove Theorem 1.

PROOF OF THEOREM 1. Let  $\overline{X}$  = the universal covering space of X. Then it follows from the results of [3] that  $H^*(\overline{X})$  is finitely generated. Further,  $\overline{X} = \Omega \overline{Y}$  where  $\overline{Y}$  is the 2-connected fibre space over Y (see [10]). Further  $\overline{Y}$  is the fibre of a multiplicative fibre map of Y into  $K(\pi_2(Y), 2)$ , and hence  $\overline{Y}$  is an H-space. We will show that  $\overline{X}$  is acyclic, (i.e., that  $H^i(\overline{X}) = 0$  for i > 0) and therefore X is a  $K(\pi, 1)$ ,

finite dimensional with  $\pi$  abelian finitely generated. Then  $\pi$  must be free abelian and the result will be achieved.

Therefore we will assume that  $\pi_1(X) = 0$  and show that X is acyclic.

If X is not acyclic, then  $H^*(X)/\text{Torsion}$  is nontrivial (see Part 1 of Theorem 3 of [4] or see [5]), and hence  $H^*(X)/\text{Torsion} = \Lambda(x_1, \dots, x_n)$ , the exterior algebra on odd dimensional generators  $x_1, \dots, x_n$  (see [2]). Since  $H^*(X)$  is finitely generated, only a finite number of primes occur as torsion numbers of  $H^*(X)$ . Hence for almost all primes, in particular for all sufficiently large primes p,  $H^*(X; Z_p) = (H^*(X)/\text{Torsion}) \otimes Z_p$ . Therefore we have  $H^*(X; Z_p) = \Lambda(x_1, \dots, x_n)$  (identifying  $x_i$  with its image in  $(H^*(X)/\text{Torsion}) \otimes Z_p = H^*(X; Z_p)$ ) for all sufficiently large p.

By a theorem of Borel (Theorem 13.1 of [2]) we have that  $H^*(Y; \mathbb{Z}_p) = P(y_1, \dots, y_n)$  if the prime p is not a torsion number of H(X), with dim  $y_i = \dim x_i + 1$ . Let the y's be ordered so that  $2k = \dim y_1 \le \dim y_i \le \dim y_n = 2m$ ,  $1 \le i \le n$ , and k > 1 since dim  $x_i > 2$  for all i.

Choose p so large that 2k+2(p-1)>2m and p>k>1, or in other words choose  $p>\max(m-k-1,\ k)$ , and large enough that p does not occur as a torsion number of  $H^*(X)$ . Then  $y_1$  is primitive since it is in the first nonvanishing cohomology group of Y and we may apply Theorem 2 to  $y_1\in H^*(Y;Z_p)$ . Hence  $\mathcal{O}^1(y_1)\neq 0$  and is an indecomposable element in  $H^*(Y;Z_p)$ . But dim  $\mathcal{O}^1(y_1)=2k+2(p-1)>2m$ , and all elements of  $H^q(Y;Z_p)$  are decomposable if q>2m. This is a contradiction, so X is acyclic. Q.E.D.

One might conjecture that if X is a homotopy commutative H-space and  $H^*(X)$  is finitely generated then X is of the same singular homotopy type as K(G, 1) with G a free abelian group. Araki, James and Thomas have shown that the usual multiplication on a compact Lie group G is not homotopy commutative unless G is a torus [1], and James [8] has shown that the spheres  $S^3$  and  $S^7$  have no homotopy commutative multiplications. It will be shown elsewhere [6] that if X is a homotopy commutative H-space with  $H^*(X)$  finitely generated, then  $H^*(X)$  has no 2-torsion. Hence the Lie groups which have 2-torsion (such as SO(n) and the exceptional groups) have no homotopy commutative multiplications on them. It will also be shown in [6] that if X is homotopy associative and homotopy commutative, and  $H^*(X)$  is finitely generated, then  $H^*(X)$  has no torsion, so that  $H^*(X) = \Lambda(x_1, \dots, x_n)$ .

In conclusion, it is pleasant to acknowledge the value of some conversations with J. Stasheff.

## **BIBLIOGRAPHY**

- 1. S. Araki, I. M. James, and Emery Thomas, *Homotopy-Abelian Lie groups*, Bull. Amer. Math. Soc. vol. 66 (1960) pp. 332-334.
- 2. A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Am. of Math. vol. 57 (1953) pp. 115-207.
- 3. W. Browder, The cohomology of covering spaces of H-spaces, Bull. Amer. Math. Soc. vol. 65 (1959) pp. 140-141.
- 4. ——, Homology and homotopy of H-spaces, Proc. Nat. Acad. Sci. U.S.A. vol. 46 (1960) pp. 543-545.
  - 5. ——, Torsion in H-spaces, to appear.
  - 6. ——, Homotopy commutative H-spaces, to appear.
- 7. H. Cartan, Sur l'itérations des opérations de Steenrod, Comment. Math. Helv. vol. 29 (1955) pp. 40-58.
- 8. I. M. James, *Multiplication on spheres* (I), Proc. Amer. Math. Soc. vol. 8 (1957) pp. 192–196.
  - 9. J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, to appear.
- 10. J.-P. Serre, Groupes d'homotopie et classes de groupes abeliens, Ann. of Math. vol. 58 (1953) pp. 258-294.

CORNELL UNIVERSITY AND

THE MATHEMATICAL INSTITUTE, OXFORD