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Let Y be an H-space (a space ¥V with a continuous product
Y X Y—Y which has a unit element), ¥ arcwise connected and simply
connected, and let X =Q7Y, the space of loops of ¥ based at the unit.
We will prove

TuEOREM 1. If H*(X) (the singular cohomology ring over the integers)
is a finitely generated module over the integers, then X is of the same
singular homotopy type as K(G, 1) where G is a free abelian group
K(G, 1)=S'X -+ - XS'=the n-torus, where rank of G=mn).

Thus the loop space of an H-space Y is infinite dimensional unless
Y=K(G, 2), G free abelian.

The proof depends on Theorem 2 below.

Let p be a prime. Then the cohomology of an H-space Y over Z,
is a Hopf algebra (see [2]). If ¢: Y X Y—7Y is the multiplication in
Y, then ¢: H¥*(Y; Z,)>H*(Y; Z,) ® H*(Y; Z,) is the diagonal map
of the Hopf algebra, the product being the cup product.

Let A be a Hopf algebra over Z,, ¥: A—A4 ®A the diagonal map,
9: A®A—A the product. An element x&4 is called primitive if
Y(x)=x®1+1®x. An element y&A4 is called decomposable if
yEO(AR®A) where 4 is the subspace of A consisting of positive
dimensional elements. Let P(4) denote the primitive elements of 4,
D(A4) the decomposable elements of 4, Q(4)=A/D(A). Let &: A—A
be defined by £(x) =x?. Then £(4) is a Hopf subalgebra of 4.

We quote a theorem of Milnor and Moore [9].

THEOREM (MILNOR AND MOORE). Let 4 be an associative, com-
mutative Hopf algebra over Z, with Ao=Z,. Then the sequence 0—P(£4)
—IP(A)—*Q(A) is exact.

Thus if x€P(4A)N\D(4), then x=u? for some v & A4.
Let ®* denote the 7th Steenrod operation

¢ HM(X; Z,) — H»t20e-1(X; Z,) (p an odd prime),
Sq¢* denote the <th Steenrod square
Sqt: HMX; Zy) — H"{(X; Zy).

1 This note was written while the author was a National Science Foundation
Postdoctoral Fellow.
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THEOREM 2. Let Y be an H-space with H*(Y; Z,)
=P, * * ) Yuy - - + ) =the ring of polynomials over Z, generated by
Yyttt s Yoy * ¢, with dim y; even for all i. Let x€H*(Y; Z,) be a
primitive element. If p#=2 and m=p™+k with 0 <k <p, and r>0, then
®*™i(x) 20 is indecomposable, 0=i<k. If p#=2 and 1<m<p
®i(x) #0 s indecomposable, 0 <i<m. If p=2, and m=2""14+1 with
r>1, then Sq¥ (x) is indecomposable.

Proor. Since H*(Y; Z,) is a polynomial ring ®"(x) =x?5%0. Let
p#2, m=p'+k, k<p, r>1. Then by the Adem relations [7]

Prrtk = RI(@1)r0r

so that ®?"*i(x) =4!(®1)i®?*"(x) #0 for 0<:<k<p. Now if a is an
element of the Steenrod algebra and Y is an H-space, then
a(P(H*(Y; Z,))SP(H*(Y; Z,)) since « is additive, so that ®?™*i(x)
is primitive in H*(Y; Z,). If ®*"+i(x) is decomposable then by the
theorem of Milnor and Moore @?™ti(x) = u?. But @E}(@Er"+9)
= (141)@r"+i+l g0 that if 1<k ®!(u?)#0. But ®! is a derivation by
the Product Formula so that ®(u?) =pu?~1(®u) =0 mod p. Hence
®?"*i(x) is indecomposable in H*(Y; Z,).

If 1<m<p, p~2, we get from the Adem relations E"»=m! (@)™,
and we proceed similarly.

If p=2 and m=2"141 with »>1 we have that x?=S¢?"+2(x) and
from the Adem relations

Sq2’+2 — qusqu + qur“Sql.

Since H*(Y; Z,) is a polynomial ring on even dimensional generators
SqtH*(Y; Z) =0, for S¢' changes dimension by 1. Hence Sg¥+2(x)
=S5¢%5¢% (x) so that S¢¥(x) #0 and is a primitive element. If S¢* (x)
=u? then Sq¢%(u?) = (Sq*u)u~+ (Sq'u) (Sq'u) +u(Sq*u) =0 mod 2, since
S¢t=0 in H*(Y; Z») (S¢® is a derivation on H*(Y; Z,)). Hence
Sq¢¥(x) is indecomposable. Q.E.D.

One can apply Theorem 2 to compute many Steenrod operations
in the stable classical groups, using only the cohomology structure
mod p and the fact that the classifying space is an H-space. We will
use Theorem 2 to prove Theorem 1.

Proor oF THEOREM 1. Let X =the universal covering space of X.
Then it follows from the results of [3] that H*(X) is finitely gener-
ated. Further, X =Q7 where 7 is the 2-connected fibre space over ¥
(see [10]). Further ¥ is the fibre of a multiplicative fibre map of ¥
into K(m3(Y), 2), and hence 7 is an H-space. We will show that X is
acyclic, (i.e., that Hi(X)=0 for >0) and therefore X is a K(m, 1),
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finite dimensional with = abelian finitely generated. Then = must
be free abelian and the result will be achieved.

Therefore we will assume that m1(X)=0 and show that X is
acyclic.

If X is not acyclic, then H*(X)/Torsion is nontrivial (see Part 1
of Theorem 3 of [4] or see [5]), and hence H*(X)/Torsion
=A(x1, + + +, Xa), the exterior algebra on odd dimensional generators
%1, * + +, %a (see [2]). Since H*(X) is finitely generated, only a finite
number of primes occur as torsion numbers of H*(X). Hence for
almost all primes, in particular for all sufficiently large primes 2,
H*(X; Z,)=(H*(X)/Torsion) ®Z,. Therefore we have H*(X; Z,)
=A(%y, + + +, %) (identifying x; with its image in (H*(X)/Torsion)
®Z,=H*(X; Z,)) for all sufficiently large p.

By a theorem of Borel (Theorem 13.1 of [2]) we have that H*(V; Z,)
=P(y1, « + +, ¥a) if the prime p is not a torsion number of H(X),
with dim y;=dim x;+1. Let the y’s be ordered so that 2k=dim ¥,
=dim y;=dim y,=2m, 1<1=#, and k> 1 since dim x;>2 for all 7.

Choose p so large that 2k+2(p—1) >2m and p>k>1, or in other
words choose p>max(m—k—1, k), and large enough that p does
not occur as a torsion number of H*(X). Then y, is primitive since
it is in the first nonvanishing cohomology group of ¥ and we may
apply Theorem 2 to yyEH*(Y; Z,). Hence ®(y;) 0 and is an in-
decomposable element in H*(Y; Z,). But dim ®(y,) =2k+2(p—1)
>2m, and all elements of HY(Y; Z,) are decomposable if ¢>2m.
This is a contradiction, so X is acyclic. Q.E.D.

One might conjecture that if X is a homotopy commutative H-
space and H*(X) is finitely generated then X is of the same singular
homotopy type as K(G, 1) with G a free abelian group. Araki, James
and Thomas have shown that the usual multiplication on a compact
Lie group G is not homotopy commutative unless G is a torus [1], and
James [8] has shown that the spheres S? and 57 have no homotopy
commutative multiplications. It will be shown elsewhere [6] that
if X is a homotopy commutative H-space with H*(X) finitely gener-
ated, then H*(X) has no 2-torsion. Hence the Lie groups which have
2-torsion (such as SO(n) and the exceptional groups) have no homo-
topy commutative multiplications on them. It will also be shown in
[6] that if X is homotopy associative and homotopy commutative,
and H*(X) is finitely generated, then H*(X) has no torsion, so that
H*(X)=A(x1, - - -, %u).

In conclusion, it is pleasant to acknowledge the value of some
conversations with J. Stasheff.
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