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Let Y be an iJ-space (a space Y with a continuous product 
F X Y—» Y which has a unit element), Y arcwise connected and simply-
connected, and let X = £2F, the space of loops of Y based at the unit. 
We will prove 

THEOREM 1. IfH*(X) {the singular cohomology ring over the integers) 
is a finitely generated module over the integers, then X is of the same 
singular homotopy type as K(G> 1) where G is a free abelian group 
(K(G, l)=SlX • • • XSl = the n-torus, where rank of G = n). 

Thus the loop space of an iJ-space Y is infinite dimensional unless 
Y=K(G, 2), G free abelian. 

The proof depends on Theorem 2 below. 
Let p be a prime. Then the cohomology of an iJ-space Y over Zp 

is a Hopf algebra (see [2]). If \p: YX Y—>Y is the multiplication in 
F, then ^ : H * ( F ; ZP)->H*(Y; ZP)®H*(Y; Zp) is the diagonal map 
of the Hopf algebra, the product being the cup product. 

Let A be a Hopf algebra over ZPf \f/: A—+A ®A the diagonal map, 
6: A®A—>A the product. An element x(EA is called primitive if 
\p(x)=x®l + l<g>x. An element yÇzA is called decomposable if 
yÇîQ{A®A) where A is the subspace of A consisting of positive 
dimensional elements. Let P(A) denote the primitive elements of A, 
D(A) the decomposable elements of A> Q(A) = A/D(A). Let £: A-*A 
be defined by £(x) =xp. Then %(A) is a Hopf subalgebra of A. 

We quote a theorem of Milnor and Moore [9]. 

THEOREM (MILNOR AND MOORE) . Let A be an associative, com­
mutative Hopf algebra over Zp with A0 = ZP. Then the sequence 0—>P (£4 ) 
SP{A)->°Q{A) is exact. 

Thus if xEP(A)r\D(A), then x = u* for some uEA. 
Let (P* denote the ith Steenrod operation 

<?*: Hm(X; Zp) -> #™+2^-i)(X; Zp) (p an odd prime), 

Sql denote the ith Steenrod square 

Sq*: Hm(X; Z2) -> H^X; Z2). 

1 This note was written while the author was a National Science Foundation 
Postdoctoral Fellow. 
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THEOREM 2. Let Y be an H-space with H*(Y\ Zp) 
= P(yij • • • , yn, • • • )=the ring of polynomials over Zp generated by 
yu • • • > Jny • • • , with dim yi even f or all i. Let x£H2m(Y; Zp) be a 
primitive element. If p9*2 and m = pr-{-k with 0<k<p, and r>0, then 
6>pr+i(x)5*0 is indecomposablef 0Si<k. If p^l and Km<p 
(Pi(x)^0 is indecomposable} 0<i<m. If p = 2, and m = 2r~1 + l with 
r>ly then Sq2r(x) is indecomposable. 

PROOF. Since H*(Y\ Zp) is a polynomial ring (Pm(x) =xp?*0. Let 
p7*2, m = pr+k, k<p, r>l. Then by the Adem relations [7] 

(ppr+k _ £!((pl)*(P^ 

so that (P2>r+*(x)=i!((P1)*(Ppr(^)^0 for 0^i^k<p. Now if a is an 
element of the Steenrod algebra and Y is an iJ-space, then 
a(P(H*(Y; ZP)))QP(H*(Y; Zp)) since a is additive, so that (9pT+i{x) 
is primitive in H*(Y\ Zp). If (9pr+i{x) is decomposable then by the 
theorem of Milnor and Moore (Ppr+i(x) = up. But (P1((Ppr+i) 
= (i + l)(Ppr+ i+1 so that if i<k &l(u*)?*0. But (P1 is a derivation by 
the Product Formula so that (9l{up)=pup-l{(9lu)=0 mod p. Hence 
(?pr+i(x) is indecomposable in H*(Y; Zp). 

If Km<p, p9*2, we get from the Adem relations 6>m = m\ ((P1)™, 
and we proceed similarly. 

If p = 2 and m = 2r-1 + l with r > l w e have that x2 = Sq2r+2(x) and 
from the Adem relations 

Since H*{Y\ Z2) is a polynomial ring on even dimensional generators 
5g1JHT*(F; Z 2 )=0 , for Sq1 changes dimension by 1. Hence Sq2r+2(x) 
= Sq2Sq2r(x) so that Sq2r(x) ^ 0 and is a primitive element. If Sq2r(x) 
= u2 then Sq2(u2) = (Sq2u)u + (Sq1u)(Sq1u)+u(Sq2u) = 0 mod 2, since 
5g1 s 0 in ü * ( F ; Z2) (Sg2 is a derivation on # * ( F ; Z2)). Hence 
Sg2r(x) is indecomposable. Q.E.D. 

One can apply Theorem 2 to compute many Steenrod operations 
in the stable classical groups, using only the cohomology structure 
mod p and the fact that the classifying space is an iJ-space. We will 
use Theorem 2 to prove Theorem 1. 

PROOF OF THEOREM 1. Let X = the universal covering space of X. 
Then it follows from the results of [3] that H*(X) is finitely gener­
ated. Further, X = QY where F is the 2-connected fibre space over F 
(see [lO]). Further F is the fibre of a multiplicative fibre map of F 
into i£(7r2(F), 2), and hence F is an iJ-space. We will show that X is 
acyclic, (i.e., that H*(X) = 0 for i>0) and therefore X is a K(w, 1), 



318 WILLIAM BROWDER [July 

finite dimensional with w abelian finitely generated. Then T must 
be free abelian and the result will be achieved. 

Therefore we will assume that xi(-X")=0 and show that X is 
acyclic. 

If X is not acyclic, then H*(X) /Torsion is non tri vial (see Part 1 
of Theorem 3 of [4] or see [5]), and hence H*(X)/Torsion 
=A(xi, • • • , xn), the exterior algebra on odd dimensional generators 

X\f • * • , Xn (see [2]). Since H*(X) is finitely generated, only a finite 
number of primes occur as torsion numbers of iJ*(X). Hence for 
almost all primes, in particular for all sufficiently large primes py 

£T*(X; Zp) = (#*(X)/Tors ion)®Z p . Therefore we have H*(X; Zp) 
=A(#i, • • • , # » ) (identifying Xi with its image in (H*(X)/Torsion) 
®ZP = H*(X\ Zp)) for all sufficiently large p. 

By a theorem of Borel (Theorem 13.1 of [2 ]) we have that jff*( F; Zp) 
= P(yi, • • • , yn) if the prime p is not a torsion number of H(X), 
with dim yt- = dim #«-+1. Let the y s be ordered so that 2fe = dim yi 
^gdim 3 ^ dim yn = 2mi l^i^nt and k>l since dim x»>2 for all i. 

Choose p so large that 2k+2(p — l)>2m and p>k>l, or in other 
words choose p>max(m — k — li k), and large enough that p does 
not occur as a torsion number of H*(X). Then yx is primitive since 
it is in the first nonvanishing cohomology group of Y and we may 
apply Theorem 2 to yi(E.H*(Y; Zp). Hence ^(y^^O and is an in­
decomposable element in H*(Y; Zp). But dim (?1(y1) = 2k+2(p-l) 
>2m, and all elements of Hq(Y\ Zp) are decomposable if q>2m. 
This is a contradiction, so X is acyclic. Q.E.D. 

One might conjecture that if X is a homotopy commutative H-
space and H*(X) is finitely generated then X is of the same singular 
homotopy type as K(G, 1) with G a free abelian group. Araki, James 
and Thomas have shown that the usual multiplication on a compact 
Lie group G is not homotopy commutative unless G is a torus [l ], and 
James [8] has shown that the spheres Sz and S7 have no homotopy 
commutative multiplications. I t will be shown elsewhere [ó] that 
if X is a homotopy commutative iï-space with H*(X) finitely gener­
ated, then H*(X) has no 2-torsion. Hence the Lie groups which have 
2-torsion (such as SO(n) and the exceptional groups) have no homo­
topy commutative multiplications on them. I t will also be shown in 
[6] tha t if X is homotopy associative and homotopy commutative, 
and H*(X) is finitely generated, then iJ*(.X*) has no torsion, so that 

H*(X)=A(xi, • • • , * » ) . 
In conclusion, it is pleasant to acknowledge the value of some 

conversations with J. Stasheff. 
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