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Theorems of Jackson and S. Bernstein about the approximation of 
smooth functions are usually interpreted in the way that all functions 
with a prescribed degree of smoothness have a definite degree of ap­
proximation. They can be viewed in another way, which reveals 
their susceptibility to generalization. 

Let o)(h) be an increasing continuous subadditive function defined 
for h^O with <o(0)=0, A a compact metric space with infinitely 
many points. By C" we denote the set of all real valued functions ƒ 
on A with | / ( * ) | g l , | ƒ(*)--ƒ(*') I ^w(ft), h=p(x, x'). If A is a g-
dimensional cube, p a natural number and ( X a ^ l , we denote by 
Ci+a the set of all functions on A with continuous partial derivatives 
of orders not exceeding p and bounded by 1, and with the derivatives 
of order p satisfying a Lipschitz condition of order a and with coeffi­
cient 1. L e t G = \gn} be a sequence of continuous functions on A. 
Then, with some norm, for example the uniform norm on A> 

En(f) = E°n(f) - inf 

is the degree of approximation of ƒ by linear combinations of 
gi, • • • , gn\ and 

8n(W) = sup En(f) 
few 

is the degree of approximation of a class W. 
The theorems of Jackson and Bernstein state that for periodic 

jf£C?+ a , and the trigonometric approximation, En(f) has the exact 
order #-(*+«>/«; exceptions occur only if ƒ has a higher degree of 
smoothness. We regard this as a statement about a certain massivity 
of Cf+a, which prevents better approximation by linear combinations 
of only n functions. One can hope that an estimate of Sn(Ci+a) from 
below can be given for an arbitrary system G, and that the trigono­
metric system is close to the best possible. Tha t this is true, is shown 
by the following results : 

THEOREM 1. Let A be a compact metric space, and 5 = S(n) the largest 
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number such that there exist n points of A with mutual distances è S. 
Then for each G, 

Sn(Ci) à — « ( « ( » + 1 ) ) . 

This cannot be essentially improved, for there exists a G with 
Sn(Ci) ^co(ôi), if A can be covered by n open balls of radius Si 

THEOREM 2. /ƒ-4 is a ^-dimensional cube, then for some constant B, 
and each Gy in the uniform and the L1 norm 

(1) Zn(C?°) £ Bn~(P+")/q, p = 0, 1, • • • ; 0 < a < 1. 

From these and similar theorems one can obtain by a method of 
condensation of singularities : 

THEOREM 3. If A is as in Theorem 2, p = 0, 1, • • • and 0 < a < l , 
then there exists a constant B such that for each system G one can find a 
function foÇzCi+a such that, in the uniform and the Ll norm, 

En{fo) è Bn~<*>+«»« 

for an infinite number of values of n. 

THEOREM 4. Let Apbe the ellipse withfocii —1, + 1 and the sum of 
the half-axes 2p. For each G and each sequence €»--»0 there exists a func­
tion fo(z), analytic inside Ap, with \fo(z)\ ^ 1 such that the degree of 
approximation offQ on ( — 1, +1) satisfies,, in the Ll norm, 

(2) En(fo) à enp-n 

for infinitely many n. 

Similar and more general results were recently obtained by A. G. 
Vituskin [ l] . However, his lower bounds (for s = n+l, m = 0 in [l]) 
are of orders (n log n)^p+oc)l2q and nran, a>0, for the problems of 
types (1), and (2), respectively. 
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