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In this paper the energy method is applied to show the stability
of a certain class of difference approximations to linear hyperbolic
partial differential equations with variable coefficients. We shall con-
sider first order hyperbolic systems:

€)) uy = Az,

% a vector, 4 a coefficient matrix with real and distinct eigenvalues.
We approximate this by explicit, one level difference schemes, i.e.,
of the form

N
(2 U= D Cithh;
N

where #; and v; denote the values of the approximate solution at posi-
tion jA and at times ¢ and ¢+A respectively. We have chosen here
for simplicity the same value A for both time and space increments.

The coefficients ¢; depend on the index k; we assume that this de-
pendence is Lipschitz continuous, i.e., that ¢(k+1) —c(k) =0(4).

Since the differential equation (1) is homogeneous, # =const. is a
solution. We assume, as part of the consistency of (1) and (2), that
u=const. also is a solution of (2), i.e., that

(3) EC‘;=I.

A difference scheme is called stable in the Ly,-norm if the Ls-norm
of any solution at any given time ¢=T remains uniformly bounded,
as A tends to zero, by a constant multiple of its Ly-norm at ¢=0. It
is well known, see [4], that if (2) is formally consistent with (1) then
solutions of (2) approach solutions of (1) as A tends to zero if and
only if (2) is stable.

If the coefficients of (2) are constant, then the question of stability
can be easily settled by Fourier analysis.

Put

V() = 2 met,  U®) = 2 ue'i?;
then it follows from (2) that
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V) = COU®
where

(4) cl) = X cieii,

Restricting this discussion at the present to the scalar case, we ob-
serve that in terms of C(6), (3) can be rewritten as

(%) c@® = 1.

One obtains, as necessary and sufficient for stability, the condition of
von Neumann:
For all real 0

(6) |co)| 1.

It is easy to show that, even when the coefficients vary, it is necessary
for stability that von Neumann’s condition be satisfied at each point.
It is a long standing conjecture, supported by much numerical evi-
dence, that this is sufficient as well; here we present a proof of this con-
jecture. A further generalization to the matrix case is indicated be-
low. The various interesting special cases which have been treated
before are listed at the end. The corresponding problem for parabolic
equations has been solved by John [2].

THEOREM. If the coefficients in the difference scheme vary Lipschits
continuously and have Property (A) below, and if von Neumann's con-
dition is satisfied at every point then the scheme is stable.

PRrROPERTY (A). As k varies, the multiplicity of the roots of 1 — | Cc@) | 2
change at most by 2.

Denote the array of the coefficients c_y, - - -+, cx by ¢. The proof of
the theorem is based on the following:

LEMMA. Suppose that the trigonomeiric polynomial C(0) of degree N
satisfies conditions (5) and (6); then there exists @ 2N+1 by 2N 41
matrix Q with the following properties:

(o) Q is hermitean and nonnegative,

(B) The sum of the elements of Q along the main diagonal is 1, along
any subdiagonal is gero:

D Grokak = Ora
(v) The row sums of Q give the coefficients of C(0), i.e.,
Qe = ¢,
e being the vector all whose components are 1.

Proor. Introduce
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K@ ¢) = 2 qumetins.
Properties (o), (8), (v) of Q are equivalent to these of K:

(/) K(0, ¢) is the kernel of a hermitean nonnegative operator.
B) K(@,0)=1.
(') K8, 6)=C(0).

According to (6), 1— l C(6)|2 is a nonnegative trigonometric poly-
nomial of degree 2N. Therefore by the well known Fejér-Riesz theo-
rem it is the square of the absolute value of a trigonometric poly-
nomial D(6) of degree N. It is now easily seen, using (5), that

K(9, ¢) = C(6)C(¢) + D(6)D(¢)

has properties (), (8'), (v’). This proves the lemma.

It is not difficult to show that under the stated conditions Q can
be chosen to depend Lipschitz continuously on k.

In obvious vector notation and with the representation (y) for ¢,
(2) can be written as

u = (¢, w) = (Qe, ms).

Since by (a) Q is nonnegative, we can apply Schwarz’s inequalty,
obtaining

n S (Q¢, €)(Qu, ).
(Qe, €) =1 by (B); summing with respect to k& we get

7 E ”If = Z Qim(B) Wier 10t m.
It follows from (B) and the Lipschitz continuity of Q that

Z q:i;e,a—k = 67,3 + O(A)-
k
So it follows from (7) that

Sus{1+04)} X w

From this it follows that after #» time steps the Ls-norm is increased
at most by a factor

{1+ 0(a)}* = exp O(nA) = exp O(T).

This proves the stability of the scheme.

In the matrix case the necessary and nearly sufficient condition for
stability of schemes with constant coefficients is that the spectral
radius of C(0) is =1 for all real 6. It is conjectured that this is suffi-
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cient for stability even when the coefficients vary. If we strengthen
this condition (see [5]) to

(6" C*6)C@O) =I  for 0 real,

then the present proof applies if we make use of Rosenblatt’s gen-
eralization to matrices of the Fejér-Riesz theorem.

If condition (6’) is not satisfied then in order to apply the method
of this note we have to replace the norm »_u2 by a sum of squares
of appropriate linear combinations of #;. In this case we can no longer
require that K be a trigonometric polynomial; the same holds for
the case of more than one space variables, where in addition we have
to represent 1 — I C [ 2 as a sum of squares rather than a single square.

The stability of schemes with variable coefficients which are sym-
metric and nonnegative (in which case condition (6) is satisfied) has
been proved by Friedrichs for any number of variables, see [1], also
[4]. This does not cover many schemes of practical interest, such as
the three-term third order scheme

A2 — 4 A2+ 4
By = o e + (I — A + — Ut 1.
This scheme satisfies (6’) if the Courant-Friedrichs-Lewy condition
—I=<A =<1, is fulfilled but its coefficients are not =0.

Interesting energy inequalities for certain implicit schemes for the
second order wave equation have been derived by M. Lees in a paper
to appear in Trans. Amer. Math. Soc. Energy identities for an im-
plicit difference scheme applicable to first order systems have been
found by B. Wendroff in his N.Y.U. dissertation. Further interesting
uses of the energy method are given in Kreiss, [3].
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