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1. Introduction. The history of homotopy groups traces back to the 
fundamental groups of Poincaré [9; 10; 14].* For a given topological 
space X and a given point x0 in X, the funnamental group ir\(X, x0) 
is denned by considering the loops in X with x0 as basic point, i.e., 
the continuous maps X: 51—+X of the circle S1 into X with a given 
point So of S1 mapped into x0. 

Replacing the circle S1 by a higher dimensional sphere 5W, Hure-
wicz [7] introduced the homotopy groups xw(X, x0) in 1935 which 
turned out to be very useful and prolific. In 1941, relative homotopy 
groups Tn(Xy A, Xo), n è 2, of a topological space X modulo a subspace 
A Sit a, given point x0 were introduced by a joint paper of Hurewicz 
and Steenrod [4] and also independently by J. H. C. Whitehead [ ló] . 
These groups are denned by considering the continuous maps of an 
w-dimensional cell En into X with the boundary sphere Sn~1 mapped 
into A and a given point So of 5 n _ 1 mapped into Xo. 

For each w ^ 2 , a boundary homomorphism 

d:wn(X, A y xo) —> Wn-i(A, Xo) 

is defined by taking restrictions of the maps on the boundary sphere 
S"-1 of the cell En. 

For any continuous m a p / : (X, A, #0)—"KF, B, y0), an induced 
homomorphism 

/*:?Tn(X, A, Xo) - » 7Tn(F, £ , y0) 

is defined by means of composition. 
These are the entities of the so-called homotopy theory [5]. One 

observes that the homotopy theory looks quite like a homology 
theory. 

Since Eilenberg and Steenrod [2] established their celebrated 
axiomatic approach to homology theory in 1945, it has been a natural 
problem to ask whether a similar approach is possible for homotopy 
theory. 
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1 Numbers in brackets refer to the bibliography at the end of the paper. 
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