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1. Introduction. The notion of continuous group, later called Lie 
group, introduced by S. Lie in the nineteenth century, has classically 
a local character. Although global Lie groups were also sometimes 
considered, it is only after 1920 that this concept was clearly formu­
lated. We recall that a Lie group in the large is first a manifold, i.e., 
a topological Hausdorff space admitting a covering by open sets, each 
of which is homeomorphic to euclidian w-space; second it is a group; 
third it is a topological group, i.e., the product x-y of x and y and 
the inverse x"1 are continuous functions of their arguments; and 
finally it is required that there exist coordinates in a neighbourhood V 
of the identity element e such that if x, y, and x-y are in V, the 
coordinates of x-y are analytic functions in the coordinates of x and 
y. Gleason, Montgomery, and Zippin recently proved that the last 
condition follows from the others, thus solving Hilbert's fifth prob­
lem, with which we shall not be concerned here. 

As soon as the concept was defined with precision, there arose the 
problem of studying topological properties of such group-manifolds. 
Indeed, in the first paper which systematically considers global Lie 
groups, H. Weyl's famous paper on linear representations [8l], a key 
result which states that the fundamental group of a compact semi-
simple Lie group is finite is topological in nature. The question was 
next considered by E. Cartan in several papers, and later on by many 
mathematicians; as a matter of fact, it was often generalized in order 
to include also the study of "homogeneous spaces," i.e., manifolds 
which admit a transitive Lie group of homeomorphisms. A very com­
plete survey of the work done in this field up to 1951 has been 
published in this Bulletin by H. Samelson [67]. Although of course 
some overlap is unavoidable, the present report is meant as a sequel 
and will therefore concentrate mainly on developments which oc­
curred during these very last years. I t will be devoted for the greater 
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part to homological properties of compact Lie groups, their classify­
ing spaces and coset spaces. To complete the picture we also discuss 
at the end homotopy groups, noncompact Lie groups and their coset 
spaces and homogeneous complex spaces. 

2. Outline of methods. There have been several lines of approach 
to the study of homological properties of compact Lie groups and 
coset spaces which, in first approximation, may be divided into three 
groups ; methods of differential geometry, of algebraic topology, and 
the use of Morse theory. 

The first direction was initiated by E. Cartan [16] who showed 
that the study of exterior differential forms on a coset space G/U 
invariant under the operations of G allows one to compute the Betti 
numbers of G/U using de Rham's theorems (which were conjectured 
by Cartan for that purpose, and proved soon afterwards by de 
Rham). This method was applied to the classical groups by R. Brauer 
and to certain symmetric spaces by C. Ehresmann, and Iwamoto. 
Implicit in Cartan's construction was the notion of cohomology ring 
of a Lie algebra modulo a subalgebra which was explicitly formu­
lated by Chevalley-Eilenberg [25] and which became Koszul's prin­
cipal tool [41 ]. Under the influence of A. Weil this point of view was 
broadened and led to a theory of differentiable principal bundles 
which gave a framework to a modern exposition of E. Cartan's theory 
of connections as well as new tools to study homology of coset spaces. 
The work of H. Cartan, C. Chevalley, J. L. Koszul and A. Weil in 
this direction has been summarized in [20; 24; 42]. Some of the main 
points are an algebraic transgression theorem in the Weil algebra 
(whose topological analog will be discussed in §9), a theorem of 
Chevalley connecting the Betti numbers of a Lie group and the in­
variants of its Weyl group (see §9), a result of Cartan on homo­
geneous spaces (see §13), and a theory, due to Koszul, of a certain 
type of differential algebras. Besides its topological applications, the 
latter allows us to give a homological formulation of Hubert 's theory 
of syzygies; it was later on generalized by H. Cartan-S. Eilenberg 
(see their forthcoming book, Homological Algebra, Princeton Series, 
no. 19). This method makes full use of differential forms, and as far 
as topology is concerned, gives results only about real cohomology. 
Already discussed in [67], it will not be dealt with here anymore, 
since most of the results directly relevant to our subject have been 
obtained later on by topological methods, to which we now turn our 
attention. Roughly speaking, these and the results to which they lead 
may also be divided into three groups. 
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The first group (see §§6, 7) consists of general properties, "general" 
in the sense that they derive solely from the existence of a non trivial 
product, say with unit, sometimes assumed to be associative. The 
interest of this approach was displayed first by H. Hopf [38] who 
showed that the real cohomology algebra of a compact connected 
manifold endowed with such a product is a Grassmann algebra. Sub­
sequent work along these lines has been done by H. Samelson [66], 
J. Leray [45], and the author [2]. 

The second group uses fiber bundle theory and in particular Leray's 
spectral sequence. Its starting point is the existence of universal 
bundles (see §8 for definition) and is at the source of a great part of 
the recent progress in this field. I t may be viewed as a study of rela­
tions between on one hand cohomological and group-theoretical prop­
erties of a compact Lie group Gf and on the other hand universal 
properties of characteristic classes of bundles with structural group 
G. Thus it connects topology of Lie groups with a problem of fiber 
bundle theory, and the simultaneous consideration of these two ques­
tions has allowed us to gain new information on both. The main 
results are described in §§8, 9 and the most important examples are 
given in §10; more or less direct applications to coset spaces and Lie 
groups are discussed in §§11 to 14. 

The results obtained so far from these two points of view do not 
give a systematic and effective procedure to compute the cohomology 
over a field of characteristic not zero of a given coset space. In order 
to determine it (whenever possible), one has to use "special devices" 
taking advantage of some particular property of the space under con­
sideration, and these make up the third group mentioned above. The 
main ones are cellular decompositions (see §15) and the study of 
special fiberings combined with the general results on universal bun­
dles; §11 indicates the present state of knowledge concerning the 
cohomology of the compact simple Lie groups. 

The use of Morse theory in these questions was recently initiated 
by R. Bott [13] who derives topological properties of certain coset 
spaces and of the space of loops on a Lie group by the study of 
geodesies on compact Lie groups. Their properties are obtained from 
the theory of singular elements, due to H. Weyl and E. Cartan, which 
is thus connected with topology in an entirely new way. The results 
announced in [13; 14], will be mentioned in §§11, 12, 15, 18. 

3. Algebra. I t will be convenient to recall in §§3, 4, 5 some known 
facts and definitions and to fix notations. 

p will denote either a prime number or zero, Zp (p prime) the field 
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of integers mod py Z0 the field of rational numbers, R the real num­
bers, K an arbitrary field. 

A module M over a ring A is graded if it is the direct sum of sub-
modules to be denoted here by Ml (sometimes Mi), the index running 
through the positive integers; the degree d°x of an element xs^O is 
the smallest integer i such that # £ E t é * M3\ and the elements of M'% 

are the homogeneous elements of degree i. 
A graded algebra over a ring A is a graded module where H1!!1 

dHi+J; the unit, if any, is then contained in H°. The algebra, or the 
product, is said to be anticommutative if 

a.b = ( - l ) w j . a , (a G ff*, & G HO, 

when 4̂ =Z 2 , this is just commutativity ; if 4̂ is a field of character­
istic T^2, then every homogeneous element of odd degree has square 
zero. 

The exterior algebra of a vector space P over a field K (or of a free 
abelian group) is denoted A(P) or A f e , • • • , #«) where the xfs 
form a base of P ; the latter will always be graded, and the Xi be 
homogeneous; AGP) is then a graded algebra under the exterior 
product. When K has characteristic 5^2, the exterior product is 
anticommutative if and only if the x% have odd degrees. 

The elements (x<) of an algebra H form a simple system of genera­
tors if H is the weak direct sum of the .4-modules generated by the 
unit, if any, and by the elements 

«V#*'2 x*k (*i < 2̂ < • • • < ik\ 1 ^ * â 5). 

We write in this case Jff=A(#i, • • • , xs). The additive basis is the 
same as for the exterior algebra A(#i, * * * , x8), but the former differs 
in that no requirement is made about XiXj+XjXi. 

As usual A [xi, • • • , x8] is the ring of polynomials in the inde-
terminates Xi, • • • , x8 with coefficients in the commutative ring A. 
We denote by S(xi, • • • , # « ) the ring of symmetric polynomials in 
t h e x / s a n d by <Ti(xi, • • • , xs) the ith elementary symmetric function. 

If Hi and ff2 are two graded algebras over a ring A, H\®H^ is 
their (skew-)-tensor product over i : as a module, it is the usual 
tensor product, but the product is defined by 

( a ® 6)-(c® d) = ( - l ) V c ® &•<*), (benlcEHi); 

it has three gradings, but the one we shall consider usually is the 
total degree defined by 

(Hi ® H%)* - E El ® Hl 
ê+t«*i 
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If Hi and H2 are anticommutative, so is H\®Hi with respect to the 
total degree. 

4. Homology and cohomology groups. We shall not specify the 
homology and cohomology groups of a space X. Actually, since al­
most all the spaces considered, at least up to §16, are compact 
differentiate manifolds and hence finite polyhedra, most of the time 
it would suffice to use simplicial homology and cohomology groups. 
Hl(Xy A) (resp. Hi(X, A)) is the ith cohomology (resp. homology) 
group of X with coefficients in the abelian group A, and H*(X, A) 
(resp. H*(X, A)) is the direct sum of the H^X, A) (resp. Hi(X, A)). 
We shall in general consider cohomology so that, when A is a ring, 
we have a product in H*(X, A), the so-called cup-product; it is 
associative, distributive, adds the degrees, has a unit, spanning 
i?°(X, A) when X is connected, and is anticommutative when A is 
commutative. 

The homology and cohomology groups depend on the coefficients, 
the most complete information being obtained when A is the ring of 
integers Z. In this case we have (X being a finite polyhedron) : 

#*(x, z) = Fi + r* 
with F* free abelian and finitely generated, Tl finite; the Tl define 
the torsion of the space X. In particular we say that X has ^-torsion 
(p prime) if one of the T{ has order divisible by p ; to simplify certain 
statements we also allow p to be zero and agree that a space is al­
ways without 0-torsion. The study of integral cohomology groups is 
often difficult and it is convenient to first investigate the cohomology 
over various fields of coefficients choosing one for each characteristic. 
Roughly speaking, we may say that the knowledge of H*(X, Z0) 
gives information on the F\ but says nothing about torsion ; H*(X, Z0) 
and H*(X, Zp) give rather precise, though not complete, information 
on the ^-primary components of the torsion groups T\ 

In case of a field of coefficients the H{(X, K) and Hi(X, K) are 
vector spaces, dual to each other. The dimension of Hl(X, Z0) (resp. 
Hl(X, Zp)) is the i th Betti number (resp. the ith Betti number mod p) 
of X. Finally we denote by PP(X, t) the Poincaré polynomial 

Pp(X, /) = E dim E\X, Zp) • **. 
i 

As is well known the Poincaré polynomial of a cartesian product 
XX Y is the product P (X , t)-P(Y, t), and more generally 

#*(X X F J ) = #*(X, K) ® H*(Y, K) 
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(and similarly for homology). 
A continuous map f:X—>Y induces a (degree preserving) homo-

morphism of H*(Y, A) (resp. H*(X, A)) into H*(X, A) (resp. 
H*(F , i l)) to be denoted b y / * (resp./*). 

5. Compact Lie groups. We denote by G/ U the space of left co-
sets of a Lie group G modulo a closed subgroup U, endowed with the 
usual quotient topology. It is an analytic manifold on which G acts 
transitively and analytically by means of left translations. Con­
versely any manifold on which a Lie group acts transitively is homeo-
morphic to a coset space G/ U by a homeomorphism which commutes 
with the operations of G. 

A Lie group is compact, or connected, if its underlying manifold 
is compact or connected. Two Lie groups are locally isomorphic if 
there exists a homeomorphism between two neighborhoods of the 
identities compatible with the product. 

Any abelian compact connected w-dimensional Lie group is iso­
morphic to a torus Tn> i.e., to the direct product of n copies of the 
multiplicative group of complex numbers with norm 1. As is well 
known, the maximal tori of a compact Lie group G are conjugate 
to each other by inner automorphisms; their common dimension is 
the rank of G ; a maximal torus will be in general denoted by Tf since 
the omission of the rank will not bring confusion. A maximal torus 
has finite index in its normalizer NT and the quotient NT/T is a finite 
group, the Weyl group of G, to be denoted by W{G) ; it has an obvious 
representation as automorphism group of T, which is faithful when 
G is connected. 

A compact connected Lie group is simple if it has no proper closed 
invariant subgroups of strictly positive dimension, it is semi-simple 
if its center is finite. Compact connected Lie groups are locally iso­
morphic to (and in fact finitely covered by) direct products of tori 
and simple non-abelian groups, so that their classification reduces to 
that of simple groups. The different classes of locally isomorphic com­
pact connected simple groups are usually denoted by the symbols 
Ar ( r ^ l ) , Br (r°^2), Cr ( r ^ 3 ) , Dr ( r ^ 4 ) (the classical structures), 
and C?2, F4, E§y £7, Es (the exceptional structures) ; the corresponding 
groups have dimension r(r+2), r(2r + l ) , r(2r + l ) , r(2r—1), 14, 52, 
78, 133, 248 respectively; the subscript denotes the rank. Each of 
these symbols may represent several groups, as will be discussed 
more thoroughly in §11. For the moment, we simply recall that the 
classical structures are represented by well known linear groups, 
namely: 
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Ar by the group SU(r + l) of r + 1 Xr + 1 complex unitary matrices 
of determinant + 1 . 

Br (resp. Dr) by the group SO(2r + l) (resp. SO(2r)) or real orthog­
onal 2r + l X 2 r + l (resp. 2rX2r) matrices of determinant + 1 , or by 
the spinor group Spin (2r + l) (resp. Spin (2r)). 

Cr by the group S^(r) of rX^ quaternionic unitary matrices. They 
are of course all defined for r ^ l , but the restriction on the indices 
was made above in order to get each structure exactly once. We recall 
that 

(5.1) At = Bi = Ci, B2 = C2, ^ 3 = Dz, D2 = AXX Ax. 

The full group of real orthogonal (resp. complex unitary) matrices 
will be denoted by 0{n) (resp. U(n)). 

6. Hopf's and Samelson's theorems. An ü-space is a space en­
dowed with a binary continuous law of composition with unit (in 
fact a weaker condition is usually postulated, but this is of no impor­
tance here). Hopf's theorem recalled in §2 admits the following gen­
eralization [2 ] : Let X be a connected finite polyhedron which is an 
iî-space. Then H*(X, Zp) has a minimal system of homogeneous 
generators (#*), (l^gi^gw), such that the monomials 

(0 ^ fi < Si, %i ?£ 0, %i = 0) 

form an additive basis; moreover, for p~0f d°Xi is odd and s* = 2; for 
p = 2, Si is a power of 2; for p9*0, 2, S; = 2 when d°Xi is odd and s» is 
a power of £ when d°Xi is even. A suitable modification of that state­
ment applies also to infinite dimensional iî-spaces, but will not be 
considered here. A consequence of this theorem is that if X has no 
^-torsion (resp. no torsion) its cohomology ring over Zp (resp. Z) is 
the exterior algebra of a subspace (resp. free abelian group) generated 
by elements of odd degrees. As in Hopf's case, this follows from a 
purely algebraic result. Let us say that an algebra H over a field K is a 
Hopf algebra if it is graded by subspaces Hl (i jj£ 0), has a unit gener­
ating H°, is associative, distributive, anticommutative, and if there 
is a homomorphism fe* of H into H®H such that for x homogeneous 
and 7^0 we have 

k 

h*(x) = x®l + l®x+Y,Ui®Vi (0 < d°Ui < d°x = d°u{ + d%). 
i 

If X is an H-space, the product h:XXX-*X induces a map 

**: ff*(X, Zp) -> H*(X X X, Z„) S ff*(X, Zp) ® fl*(X, Zp) 

ri r2 
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which satisfies the previous condition and the above theorem follows 
from the fact that every finite dimensional Hopf algebra over a per­
fect field has a system of generators (xi) with the above mentioned 
properties. Standard facts about binomial coefficients show that the 
unit and Xi generate a subalgebra which is a Hopf algebra under the 
map hf defined by 

hi(xi) = Xi ® 1 + 1 ® x%\ 

hence we may say that a Hopf algebra over a perfect field is isomor­
phic to the tensor product of Hopf algebras Hi which are generated 
by one element (besides the unit). This does not mean however that 
the isomorphism carries h* over to the tensor product of the h*. The 
existence of such an isomorphism is essentially equivalent to the 
existence of a system of generators which are "primitive" elements, 
i.e., elements for which 

h*(x) = # ® 1 + 1 ® # , 

and examples show that this need not be the case. However, it is true 
in one important particular case: when H is an exterior algebra gen­
erated by elements of odd degrees and when fe* is "associative," i.e., 
when the two homomorphisms h*®l and 1 ® Â * of H®H into 
(H®H)®H and H®(H®H) become identical under the standard 
isomorphism of the two triple products. This is Samelson's theorem 
or more precisely the cohomological version of it (see also §7) proved 
in characteristic zero by Samelson [66], and later on by J. Leray 
[45], whose argument is valid for arbitrary characteristic, and even 
for the exterior algebra of a free abelian group. The associativity con­
dition is of course satisfied in the case of il-spaces with an associative 
product, in particular for Lie groups, for which Samelson's theorem 
can also be obtained via transgression theorems [2, §20 ]. 

Even for cohomology algebras of Lie groups, the properties of h*> 
which in fact are those of the Pontrjagin product discussed below, 
are not completely known; they seem to be closely connected with 
the universal spectral sequence (defined in §9), witness e.g. the fact 
that a universally transgressive element is primitive [2, §20]. This, 
combined with the results of §9, shows that, very often, £T*(G, Zp) 
is generated by primitive elements, but not much is known about h* 
when this fails to be true, as e.g. in the case of iï*(Spin (w), Z2) 
(n^lO) (see [5]). 

We already pointed out that if the ü-space X (always supposed 
to be a finite polyhedron) has no torsion, then H*(X, Z) is the ex­
terior algebra of a free abelian group graded by odd degrees, and 
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spanned by primitive elements when the product is associative. More 
generally the same conclusion applies to the quotient H*(X) of 
H*(X, Z) by its torsion ideal. In fact, the Künneth rule shows first 
that h* induces a homomorphism of H*(X) into H*(X)®H*(X) 
satisfying Hopfs condition (6.1), then the generalized Hopf's theo­
rem, applied to H*(X)<g>Zp for all p, gives the first statement and 
the second one follows from Leray's proof of Samelson's theorem (for 
compact Lie groups these facts are also proved in [29]). It follows 
that for p?£2, Ü*(X, Zp) contains an exterior subalgebra having the 
same Poincaré polynomial as Ü*(X, ZQ) ; it would have some interest 
to know more about this embedding. 

In the general case, nothing is known about the cohomology ring 
of an i7-space over the integers or over a ring (say the integers 
modulo a power of a prime) which is not a field. A chief difficulty is 
of course that H*(XXX, A) is not the tensor product of Ü*(X, A) 
with itself, but an extension of it by the Tor-product of .ff*(X, A) 
with itself. 

7. The Pontrjagin product. Again let X be a connected ü-space, 
with associative product h. The latter defines a map fe* of 
H*(XXX, K), which we may identify with H*(X, K)®H*(X, K), 
into H*(X, K), and h*(a®b) is called the Pontrjagin product of a 
and b: thus H*(X, K) becomes a ring under a product, first consid­
ered by Pontrjagin [62], which is associative, distributive, adds the 
degrees, has a unit spanning Ho(X, K), but, unlike the cup-product, 
is not necessarily anticommutative, and that last fact makes its study 
more difficult. I t may be remarked that the ring H*(X, K) together 
with the map d* induced by the diagonal map d:x~>(x, x) of X into 
X X X satisfies all conditions imposed on a Hopf algebra except for 
anticommutativity, but there is no structure theorem analogous to 
the generalized Hopf theorem of §6; in fact Bott-Samelson (Com­
ment. Math. Helv. vol. 27 (1954) pp. 320-337) have given examples 
of infinite dimensional iJ-spaces whose homology rings are free asso­
ciative algebras. Even for Lie groups the Pontrjagin product is not 
always anticommutative, as the following example shows [5]: 
iJ*(Spin (10), Z2) has a simple system of generators x3, #5, #6, #7, #Q, 
#i5 (d°Xi=i), with the following relations: 

Xi-Xi = 0 (all f), XiXj = Xj-Xi (i < j , (i,j) 9e (6, 9)), 

XQ ' #9 = #9 • #6 + #15. 

This is so far the only case in which the homology ring of a Lie group 
over a field is completely known and is not an anticommutative ex-
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terior algebra; its structure is still reasonably simple and it does not 
seem too unlikely that homology rings of finite-dimensional H-spaces 
have more common properties than have been found so far. 

The homomorphisms h* and h* are transposes of each other under 
the standard duality between homology and cohomology over a field; 
hence h* and the Pontrjagin product determine each other. It is also 
easily seen that if H*(X, K) has a simple system of primitive gener­
ators (xi) (l^i^m), then 

H*(X, K) == A (yu ' • • , ym) (d°yi = d°Xi, i = 1, • • • , f»), 

and conversely. By Samelson's theorem, the assumption is fulfilled in 
characteristic zero (and in fact the conclusion is Samelson's formula­
tion of this result), and also in characteristic p when H*(X, Zp) is an 
exterior algebra generated by elements of odd degrees. 

The Pontrjagin product admits a useful generalization. Let M be 
a space on which an iJ-space X operates, i.e. we have a continuous 
map g : M X l - > I such that 

g(m, e) — m {e the identity element), 

g(m, x-y) = g(g(w, x), y). 

There is induced a map g* of H*(MXX, K), which is identified with 
£T*(ilf, K)®H*(X, K), into H*(M, K), and the image of a®b 
(aEH*(M, X), b(EH*(X, K)) will also be called the Pontrjagin 
product of a and b. By duality, one also gets a pairing of H*(M, K) 
and H*(X, K) to H*(M, K). If X operates on another space N and 
if there is a continuous m a p / : M—>N commuting with the operations 
of X, t h e n / * commutes with the Pontrjagin product in the obvious 
way. More generally, one may define a pairing of the spectral se­
quence (Er) of ƒ and of H*(X, K) to (Er). When X is a Lie group, 
this was considered by J. Leray [46; 47] and later on, for fiber maps, 
by T. Kudo [44] and the author [2; 5] . An analogous situation, in­
volving spaces of loops, is the subject of Bott-Samelson's paper al­
ready mentioned. This pairing allows one e.g. to prove the following 
generalization of some results of [2; 47; 66], (see [5, §3]): Let G be a 
compact connected Lie group operating on a space M and let ƒ be a 
map of G into M commuting with the operations of G on I f and onto 
itself by left translations. Assume H*(G, Zp) to be an exterior alge­
bra generated by elements of odd degrees. Then the image of ƒ* is 
generated by primitive elements, and if p?£2, H*(M, ZP)=A®B 
where /* is 1-1 on A and annihilates the elements of strictly positive 
degrees in B. 
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8. Characteristic classes, principal and universal bundles. For 
more details about the facts of fiber bundle theory discussed in the 
sequel, we refer once and for all to [19; 48; 73]. 

The notion of characteristic class arose in 1935 in the work of 
Stiefel and Whitney about vector fields on manifolds. I t is well known 
that on a compact manifold M it is not always possible to construct 
a field of nonzero tangent vectors, depending continuously on their 
origin. However, this can be done up to a finite number of points and 
to each of these points there corresponds a certain integer, the "index 
of singularity" of the vector field at the point. By a well known result 
of H. Hopf the sum of these indices is equal to the Euler-Poincaré 
characteristic of M (in our notations to Po(Af, — 1)) ; in particular it 
is independent of the vector field. Stiefel and Whitney studied a 
generalization of the problem : the existence of k tangent vector fields, 
linearly independent at every point. To construct them, one starts 
from a triangulation of M, defines the vector fields arbitrarily at the 
vertices, then tries to extend the definition continuously to the edges, 
2-dimensional faces, and so on. This is always possible up to the 
(n — k)-dimensional simplices of the triangulation, but not necessar­
ily to the (n — k + l)-dimensional skeleton. Thus we are led to con­
sider the "indices of singularity" attached to the (n — k + ^-dimen­
sional simplices; to their sum there corresponds an (n — k + ^-dimen­
sional cohomology class wn-.k+i which is called the (n — £ + l)st Stief el-
Whitney class of M. The important point is that it depends only on 
My and not on the construction of the vector fields. We shall omit dis­
cussion of the natural coefficient systems with respect to which Wi is 
taken, and for simplicity consider w* to be an element of H^M, Z2). 
Let us just mention that when M is orientable and oriented, wn is in 
reality an integral class, equal by Hopf's theorem to the fundamental 
class multiplied by the Euler-Poincaré characteristic. 

In 1942 Pontrjagin attached to a compact oriented manifold M 
integral cohomology classes by a seemingly quite different procedure. 
He started from an embedding of M into some euclidian space EN 

(N large), and by assigning to each point PC: M the ^-dimensional 
subspace parallel to the tangent space to M at P, he defined a map ƒ 
of M into the Grassmann manifold G^>n of oriented w-dimensional 
subspaces of EN. By a careful study of its cohomology, he singled 
out certain elements p%ÇiHu(G%tni Z) (1 S^i^n) which appeared to 
be basic and considered their images ƒ*(pi). These turned out to be 
independent of the embedding and therefore to be intrinsically at­
tached to the given differentiate manifold. Subsequently, it was 
also shown that the Stiefel-Whitney classes can be defined in a sim-
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ilar fashion and, conversely, that the Pontrjagin classes are connected 
with certain problems on vector fields. Later on, S. S. Chern defined 
for a compact complex analytic manifold M of complex dimension n, 
classes d^H2i(My Z) (O^i^n) which may be characterised either 
as "obstructions" to the construction of complex vector fields or as 
images of certain elements in the cohomology of the complex Grass-
mann manifold HN,U of ^-dimensional subspaces of the complex 
affine space CN (N large), relative to a suitable map of M into HN,^ 

A first generalization of these ideas depends on the notion of prin­
cipal bundle. A space E is a principal bundle with structural group 
G (or as we shall say, a G-bundle), if E is a transformation space for 
G and if no transformation other than the identity has a fixed point 
(we assume G to be compact, otherwise the definition is slightly more 
complicated). Then the orbits of G are all homeomorphic to G and are 
called the fibers. The space of orbits B and the map of E onto B 
associating with each point in E its orbit are called the base space 
and the projection. Examples: (1) Let E be a topological group con­
taining G as a closed subgroup, and let G operate on E by right mul­
tiplication. The fibers are then the left cosets xG and B is the space 
of left cosets, denoted by E/G. (2) B = Mn is an ^-dimensional Rie-
mannian manifold, E the set of all orthonormal frames on Mn (i.e. 
a point of E is an orthonormal basis of the tangent space at some 
point of Mn), with a suitable topology. The orthogonal group 0(n) 
operates on E in a natural way and E becomes an 0(w)-bundle: the 
fibers are the frames with a given origin and the projection assigns 
to each frame its origin. Similarly, if Mn is orientable, the space of 
orthonormal frames corresponding to a given orientation is an 
SO (n)-bundle, and if M is a complex analytic hermitian manifold, 
the space of unitary orthonormal frames on M is a U(n)-bundle. 

I t next became apparent that the above characteristic classes may 
be associated with bundles of frames and moreover that the Stiefel-
Whitney, Pontrjagin, and Chern classes may be defined for any 0{n), 
SO(n), and U(n)-bundle respectively. 

The final step in the generalization arose from the observation 
that the Grassmann manifolds were not necessary as "reference" 
spaces but could be replaced by what we now call classifying spaces. 
This generalization is valid for any compact Lie group G. 

A principal bundle with structural group G is said to be n-universal 
(for G) if its homology (or homotopy) groups vanish up to n (except 
for Ho of course). Such spaces exist for arbitrary compact Lie groups 
and any n, including n = «> ; we shall hereafter omit mentioning n. 
The base space B Q of the universal bundle £<? for G is called a classify-
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ing space for G; its importance lies in the classification theorem which, 
roughly, states that the essentially different G-bundle structures with 
a given base B are in 1-1 correspondence with the homotopy classes of 
maps f:B—*Bo' Therefore, to any G-bundle over B there is attached 
a homomorphism ƒ * of H*(BG, A) into Ü*(J3, A), the characteristic 
map of the fibering, the image of which is called the characteristic ring 
of the fibering. The characteristic classes of Stief el-Whitney, Pon-
trjagin, and Chern appear then as images of particular elements in 
ff*(5o(n), Z2), H*(Bso(n), Z), and H*(Bu(n), Z) respectively. Thus 
H*(Boy A) may be viewed as the ring of "universal" characteristic 
classes for G-bundles; its properties are universal in the sense that, 
by the classification theorem, they are valid in any G-bundle, and 
are therefore quite important. More generally there is the problem 
of investigating the relations between the cohomology rings of B G 
and of G, in other words of the base and the fiber in the universal 
bundle EG; this is precisely the problem alluded to in §2; it will be 
discussed in §9. In the study of this problem, an important role is 
played by a map p(Z7, G) defined as follows. Let U be a closed sub­
group of G. Then EG is clearly a principal bundle with structural 
group U, with vanishing homotopy groups; hence it is also a uni­
versal bundle for U. The natural projection of EG/ U onto EG/G may 
then be considered as a map of Bu into BG, to be denoted by p( U, G). 

Without entering into details, let us just mention in passing that 
p( 27, G) is a fiber map of a fibering of BUy with typical fiber G/ U, base 
BG, and that p(27, G) also occurs in the problem of restricting the 
structural group of a fiber bundle: the structural group of a bundle 
with base B defined by a map f\B—>BG can be restricted to U if 
and only if there exists a map g:B—>Bu such that ƒ—p(U, G) -g. 

9. Results on universal bundles. Invariants of the Weyl group. To 
express these results, we shall use the notion of transgression in a 
fiber bundle, and first recall briefly one of its possible definitions 
(see [2, §5] for more details). Let E be a bundle with fiber F, base B, 
projection map T (e.g. a principal bundle, the only case in which 
this definition will be used below). Let IT' (resp. i') be the map of 
cochains induced by ir (resp. the inclusion of a fiber in E). An ele­
ment xÇzH8(F, A) is transgressive in E if there exists a cochain c on 
E such that i'{c) is a cocycle of x and that its coboundary is of the 
form 7r'(fr), where b is some cochain on B, necessarily a cocycle. Its 
cohomology class yÇ.H*+1(B, A) is determined by x only modulo a 
certain subgroup L8+l and the transgression is the map of the trans­
gressée elements of HS(F, A) into üP+1(^> A)/L8+1 derived from 
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x—>y. In spite of the fact that y is not uniquely determined by x in 
general, we shall write y =r(#) whenever y is obtained from x by this 
procedure. 

Let now G be a compact connected Lie group. Then x £ ü s ( G , -4) 
is universally transgressive if it is transgressive in Eg. The classifica­
tion theorem shows that it is then transgressive in all G-bundles. The 
notion of transgression is interesting for at least two reasons: First, 
as we shall see, it is intimately related with the characteristic classes, 
and second a knowledge of the transgressive elements is quite useful 
in the computation of spectral sequences; this more technical point 
will not be illustrated here any further and we refer to [2; 5] for 
examples. 

The study of the homological properties of the universal bundle, 
i.e., essentially of its spectral sequence, the universal spectral sequence 
for G, appears thus to be a basic problem. So far, only partial results 
are known, the main one being: 

(A) If H*(G, Zp) is the exterior algebra of a subspace graded by odd 
degrees, then H*(G, Zp) = A(#i> • • • » %m), with x% universally trans­
gressive, of odd degree, and H*(BG, Zp)=Zp\y\, • • • , ym] with 
yi = r(xi) (l^i^m). Conversely if H*(BG, Zp) =Zp[yi, • • • , ym] with 
the yis of even degrees, then H*(G, Zp) = A(#i, * * * , xm) with the x / s 
universally transgressive and yi — rixi) (l^i^m). 

A similar result is valid over integers, when G has no torsion (see 
[2, Théorème 19.1; 5, Théorème 6.1]). The assumption of (A) is 
fulfilled when G has no ^-torsion, and in particular in characteristic 
zero. An analogous, but weaker, result is: 

(B) If H*(G, Z2) has a simple system (#,-) of universally transgres­
sive generators, then Ü*(i3(?, Z2)=Z2[^i , • • • , ym], where yi=r(xi) 
(l^i^m) and conversely. 

(See [2, Proposition 19.1; 5, Théorème 6.1]). In (B) we assume 
the existence of transgressive generators, whereas it is a part of the 
conclusion in (A); this assumption is often fulfilled, even when there 
is 2-torsion, e.g. in the case of SO(n) (n^3), G2, FA, Spin (n) ( 7 ^ n 
^ 9 ) . However it is not true for if*(Spin (n), Z2) when n ^ l O (see 
[5]). 

Nothing is known up to now about H*(BG, Zp) outside the cases 
covered by (A) and (B) ; it seems that one has to expect quite differ­
ent properties and that their study will require more knowledge 
about the behavior of reduced powers in the spectral sequence. 

Let now T be a maximal torus of G. Then 

#*(JT , Z) = /\{ui, • - . , ur) (d°Ui = 1, r = dimension of T), 
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and by (A), or also by more direct considerations, 

H*{BTlZ) = Z[vu • • • , vm] (Vi = r W , (1 S i S r)). 

The Weyl group W(G) of G operates on T, hence on its cohomology, 
and also on H*(BT, Z), as is easily seen; we denote by I G the ring of 
polynomials in the latter invariant under W(G) ; it is a direct sum-
mand, and IG®ZP is thus canonically embedded in H*(BT, Z)Ç$ZP1 

which is just H*(BT, Zp), since BT has no torsion; it is of course con­
tained in the ring of invariants of W(G) operating on H*(BT, Zp)} 

and is equal to it when p = 0, but may be different from it otherwise. 
If we consider real cohomology, then we may identify H*(BT, R) 
with the ring of polynomials over the Lie algebra of T, the operations 
of W{G) being the obvious ones, but we have of course to give the 
"dimension" 2 to the coordinates Vi when we consider them as ele­
ments of H*(BT, R). The invariants of the Weyl group and the 
cohomology of BG are connected by the following theorem: 

(C) Let T be a maximal torus of a compact connected Lie group G. 
Assume H*(G, Zp) to be the exterior algebra of an s-dimensional sub-
space graded by odd degrees. Then s = dim T and p*(T, G) maps 
H*(BG, Zp) isomorphically onto IG®ZP. 

A similar result is valid over integers when G has no torsion. This 
theorem is established in [2, §§26, 27], under the apparently slightly 
stronger (though in fact equivalent) assumption that G has no p-
torsion, but the proof is the same. Also, [2] assumes that G/T has 
no ^-torsion (resp. no torsion), a fact which has since been proved 
to be always true (see §15). Theorems (A) and (C) have assumptions 
always fulfilled in characteristic zero and show therefore that the 
ring of invariants of the Weyl group has r algebraically independent 
generators of (cohomological) dimensions 2mi, • • • , 2mr, where 
iJ*(G, R) = /\(%u ' * * , %r) (d°Xi~2mi — l, i = l, • • • , r), a result 
first obtained by C. Chevalley [24] ( r= rank G). 

Let U be a closed connected subgroup of G, and S C T be maximal 
tori of U and G. When (A) can be applied to U and G, the study of 
the homological position of U in G, i.e., of the map £T*(G, K)—> 
H*(U, K) induced by the inclusion, is essentially equivalent to that 
of p*(Z7, G). If moreover (C) can be used, then p*(£/, G) is deter­
mined by the behavior of the invariants of W(G) under the map 
p*(5, 7"), which in turn is explicitly described by means of the homo-
morphism Hl(T, K)—^H1(S1 K) defined by the inclusion SQT (see 
[2, §§28 and 31] for some applications). If G*~U(n), Sp(n), SO(n), 
then the knowledge of p*(S, T) boils down to that of the weights (in 
E. Cartan's sense) of the linear group U. Thus we are led to connec-
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tions between weights and homological position of subgroups of the 
classical linear groups. For real cohomology, and starting from a point 
of view more akin to [20; 24], they have been studied by E. B. 
Dynkin [27; 28; 30; 31a]. 

An analogous, though different, example of relations between 
classifying spaces and group theoretical properties is offered in co­
homology mod 2 by 0(n). Here we take instead of a maximal torus 
the subgroup Q(n) of diagonal matrices which is isomorphic to 
(Z2)w; by a standard result 

flr*(J5Q(n),Z2) = Z2[vh • • • , » » ] (d% = 1; i = 1, • • • , n). 

The quotient by Q(n) of the normalizer of Q(n) in 0(n) is readily seen 
to operate on H*(BQ(n), Z2) as the full group of permutations of the 
vts. Then, in analogy with (C), it may be shown that p*(Q(n), 0{n)) 
maps H*(Bo(n), Z2) isomorphically onto the ring of symmetric func­
tions in the vfs, i.e., onto the ring of invariants of the "Weyl group" 
defined by using Q(n) instead of T. Moreover, p*(Q(n), 0(n)) maps 
the ith universal Stiefel-Whitney class Wi (introduced in §8) onto 
the ith elementary symmetric function in the vfs [3, Théorème 6.1]. 
A similar result is valid for the special orthogonal group. 

Here again, not much is known outside these two cases. The latter 
one suggests the substitution of maximal abelian subgroups of type 
(P, ' ' • i P) for maximal tori when dealing mod p with a group having 
^-torsion, but examples show that one cannot expect relations as 
simple as for 0(n) in general, though on the other hand these sub­
groups seem definitely to be related to the ^-torsion of the group (see 
§12). 

10. Examples. We describe here briefly some relations between the 
results of §9 and the characteristic classes introduced in §8, using 
some facts on the cohomology of the classical groups (see §11 for 
references), and on their structure (see e.g. [74]). 

U(n) has rank n and no torsion. The Weyl group operating on 
H*(BT, Z) =Z[VI, • • • , vn] is the group of permutations of the p/s, 
and p*(7\ U{n)) maps H*(Bu(n), Z) isomorphically onto the ring 
S(vi, • • • , vn) of symmetric functions. The universal ith. Chern class 
is mapped on the ith elementary symmetric function. Thus 
H*(Bu(n), Z) is the ring of polynomials in the Chern classes, and 
moreover IZ'*(i!7(w), Z) = A(#i, • * * , xn)t where C4=r(x») and there­
fore d°Xi = 2i— 1. 

The unitary symplectic group Sp(n) has rank n and no torsion. 
W(Sp(n)) is the group of permutations of the Vi combined with 
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arbitrary changes of signs; hence IsP(n)=S(v2
11 • • • , vl): the ring 

H*(BsP(n), Z) is generated by elements of dimensions M ( l^g i^w) , 
and H*(Sp(n), Z) by elements of dimensions 4i— 1 (1 SiSn). 

S0(2n + 1) (resp. S0(2n)), has rank n and its Weyl group consists 
of the permutations of the vjs together with an arbitrary (resp. even) 
number of changes of signs. Hence Iso(2n+i)=S(v2

1, • • • , vn) and 
I sow is generated by S(vl, • • • , vl) and the product v\ • • • vn. For 
py^l, SO(m) has no ^-torsion (m = l, 2, 3, • • • ) and we may apply 
(A) and (C). Also, it turns out that p*(T, SO(m)) maps the ith uni­
versal Pontrjagin class, reduced mod py onto <ri(v\, • • • , vn). In fact, 
this is also true over the integers, though in that case the kernel of 
P*(JT, SO(m)) is not zero. In the case m = 2n1 the product Vi • • • vn 

plays a special role, too; it is the image under p*(T, S0(2n)) of the 
so called Euler-Poincaré class Wm. The latter is the unique element of 
H2n(Bso(2n)y Z) having the following property: if M is a 2^-dimen-
sional orientable compact oriented manifold, and if ƒ : M-^Bso&n) is 
the map corresponding to the bundle of orthonormal frames (see §8), 
then ƒ*( Wm) is equal to the generator of H2n(M, Z) singled out by the 
orientation, multiplied by the Euler-Poincaré characteristic of M. 

Analogously, it may be shown that for m — 2n, 2n-\-\, and for 
p7^2, p*(T, 0(m)) maps JET*(J5O(W), ZP) isomorphically onto 
5(^i, • • - , v%). One can also introduce a universal Pontrjagin class 
PiÇ:Hu{Bo{m), Z), (i.e., for 0(m) bundles and not as before for 
SO(m) bundles); it is mapped onto <r»•(«;?, • • • , vl) by p*(7\ 0(m)) 
(also over integers). 

The cohomology mod 2 and the relations with Stiefel-Whitney 
classes have already been mentioned in §9. A closer investigation 
shows that in H*(B0(n), Z) and H*(Bso(n), Z) all torsion elements 
have order 2. This implies that an element of the integral cohomology 
ring is completely determined by its reductions mod 2 and over the 
rationals. The ith Pontrjagin class may then be characterised as the 
element which is mapped onto the ith elementary symmetric function 
in the vjs in H*(BT, Z0) and onto the square of the 2ith elementary 
symmetric function in H*(BQ(n), Z2). 

Some of the above results for the orthogonal groups are not in the 
literature, but follow without difficulty from known facts. A complete 
discussion may be found in mimeographed notes of lectures held by 
the author at the University of Chicago, Fall 1954. 

The interpretation of characteristic classes as elementary functions 
gives immediate interpretations or proofs of their so-called Whitney 
duality properties. I t also leads to a method of computation of their 
Steenrod reduced powers and, via transgression, of reduced powers in 
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the classical Lie groups. This in turn has applications to problems of 
differential geometry like existence of vector fields or of almost com­
plex structures on spheres (see [12]). 

11. Homology and cohomology of compact simple Lie groups. The 
different classes of locally isomorphic compact simple Lie groups have 
been listed in §5. Each of them contains a simply connected repre­
sentative, unique up to global isomorphism, and the other groups 
are quotients of the former by subgroups of its center. 

For Ar, Br, Cr the simply connected groups are 

SU(r + l), Spin(2r + 1), Sp(r) 

whose centers are cyclic of orders r + 1, 2, 2. The quotients by the full 
centers are the groups PU(r + l), S0(2r + 1), PSp{r) of projective 
transformations induced in the complex r-dimensional, real 2r-
dimensional, quaternionic (r — 1)-dimensional projective space re­
spectively. 

The simply connected group of structure Dr is Spin (2r), its center 
is of order 4, cyclic if r is odd, noncyclic otherwise; the quotient of 
order 4 is the projective orthogonal group PS0(2r). For r odd, there 
is one quotient of order 2, which is S0(2r) ; for r even there are besides 
SO(2r) the two "semi-spinor" groups. The latter are homeomorphic 
to each other for all r, and in particular for r = 4 , are isomorphic to 
SO(8) by the triality principle; however, it is not known to the author 
whether the semi-spinor group is homeomorphic to the corresponding 
orthogonal group in general. 

Finally the simply connected representatives of the structures 
G2, F4, Ee, E7, E8 have cyclic centers of orders 1, 1, 3, 2, 1. (For all 
this, see e.g. E. Cartan, Annali di Matematica vol. 4 (1927) pp. 209-
256). 

Up to now, the following information on the homological proper­
ties of these groups has been obtained. 

(11.1) The real cohomology for all groups (see e.g. [2], [24], [66],and 
[67] for other references). Two locally isomorphic groups have the 
same real cohomology (see e.g. [62], it also follows from standard 
theorems on coverings, or from statement (C) in §9) ; hence it is a 
property of a class of locally isomorphic groups. For EQ, E7, E8 the 
degrees of the primitive generators are (3, 9, 11, 15, 17, 23), (3, 11, 
15, 19, 23, 27, 35), (3, 15, 23, 27, 35, 39, 47, 59). For the other struc­
tures, see below. 

(11.2) The integral cohomology ring of SU(n), Sp(n)y G2, F4. The 
groups SU(n) and Sp(n) have no torsion [36; 62; 2] and 
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H*(SU{n), Z) = AO3, as, • • • , **i-i), 

H*(Sp{n),Z) = A(*8, *7, * * * , *4n-l), (rf°*< = i). 

G2 has 2-torsion and Ü*(G2, Z) has 2 generators A3, An of degrees 3, 11 
such that ht = h2

n = 0 and that H^(G2} Z) is the weak direct sum of 
the infinite cyclic groups generated by 1, A3, An, A3 An and of the 
groups of order 2 generated by A3, h\ (see [5, §17]). 

F4 has torsion coefficients of order 2, 3, 6, and iJ*(F4, Z) is iso­
morphic to the product 

U ® #*(G2, Z) ® A(«) (<20* = 15), 

where U is a graded algebra with unit defined by 

I/o = c/23 = z i/s = [/s. u% = j/ie = Zs> c/i = 0 otherwise 

(see [5, §23]). 
(11.3) Spin (n) (n^6) has no torsion] SO(n) (n^3) and Spin (n) 

(n^7) have 2-torsion and all their torsion coefficients are equal to 2 (see 
[2; 35; 56; 62] for SO{n), and [5] for Spin (n)). Hence their integral 
cohomology rings are theoretically determined by their cohomology 
rings over Z0 and Z2; however the explicit formulas seem to be quite 
cumbersome and have not been written down. 

Added in proof. Other proofs of the results about Spin(w) men­
tioned in (11.3), (11.4) have been recently given by S. Araki (Memoirs 
of the Faculty of Science. Kyusyu Imperial University, Series A, 
vol. 9 (1955) pp. 1-35). He uses a cellular decomposition which is a 
covering of the J. H. C. Whitehead cellular decomposition of SO(n), 
the basic tool of Miller [56]. 

(11.4) The cohomology mod p (all p) for G2l F± and all the groups 
of the classical structures (with the possible exception of the semi-
spinor groups of type D2r (r9^2) in cohomology mod 2), with partial 
or complete information on Steenrod's reduced powers. In the case 
of G2, F4, SU(n), Sp(n) the cohomology ring can be read off (11.2). 
For the reduced powers see [5; 12]; for the Sq{ in SO(n), see [3; 56]. 
Moreover, H*(G2, Z2) and i l * ^ , Z2) have simple systems of uni­
versally transgressive generators of degrees (3, 5, 6) and (3, 5, 6, 15, 
23) respectively. 

Let s be the greatest power of 2 dividing a given integer n. Then 

H*(PSp(n),Z2) 

= Z2[a]/(a4s) ® A (#3, %7, ' * * , #4s-5, #4s+3, • • • , *4n- l ) , 

(i°a = l, d°Xi=i1 1 ^i^4n). There are analogous results for PS0(2r) 
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and for the quotients of SU(n), which we do not recall here (see [5, 
§10]). 

H*(S0(n), Z2) has a simple system of universally transgressive ele­
ments (hi) (d°hi=i, i = l, • • • , » - l ) , with the relations 

Sq*hj = ( . )hi+j (i S j,i + j â » — 1), Sq*hj = 0 otherwise. 

In particular, hi-hi — hu if 2iSn — \, and hi^hi — 0 otherwise. 
H*(PSO(2n),Z2) is derived from this in the same wayas£T*(P5^(w), 
Z2) îrom H*(Sp(n),Z2). 

Finally, let s(n) be the integer such that 2* ( n )~1<wg2 s ( n ) . Then 
£f*(Spin (n), Z2) has a simple system of generators whose degrees 
form a sequence obtained from 3, 4, • • • , n — 1 by erasing all powers 
of 2 and adding 28(w) — l (one generator for each degree). The Sq{ are 
also known for the greater part [5, §13]. 

(11.5) The groups of the structure E& (resp. En, Es) have no p-torsion 
for p^7 (resp, £ ^ 1 1 ) (see [7]) and the group of structure E8 has 2-
torsion [ l l , see §12]. 

(11.6) Let G be compact, connected, simply connected, simple and 
non-abelian. Then Hz(G, Z) = Z . 

This is deduced by Hurewicz's isomorphism theorem from TI(G) 
=TT2(G) = 0 , TTS(G) =Z (see §18). 

(11.7) We have already pointed out that the homology ring (the 
multiplication being the Pontrjagin product) mod p is an exterior 
algebra when there is no ^-torsion, in particular for p~0. I t follows 
also from §7 and (11.4) that H*(SO(n), Z2), H*(G2, Z2), £fc(F4, Z2) 
are exterior algebras generated by elements of degrees (1, 2, • • • , 
n — 1), (3, 5, 6), (3, 5, 6, 15, 23) respectively, (see [S], and also [56] 
for SO(n)). 

Finally, we point out that many results on the classical linear 
groups are particular cases of theorems on Stiefel manifolds (see the 
references given above). 

12. Remarks on cohomology of Lie groups and on Weyl groups. 
Many of the results on the torsion of Lie groups listed in §11 are 
established by use of special properties of the individual groups. 
However even if the three last exceptional groups could be handled 
in the same way, this would not constitute a fully satisfactory solu­
tion of the problem, the ultimate goal being to arrive at a systematic 
procedure for computing cohomology from the group theoretical, or 
infinitesimal, properties. For real cohomology this is attained by 
Chevalley's theorem (see §9) which relates Betti numbers and in-
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variants of the Weyl group. Another method was already contained 
in E. Cartan's work [16], but it led to computations too cumbersome 
to be applied to the last 4 exceptional groups. No such result is yet 
available in cohomology mod p for p^O, though there is evidence 
of relations between torsion and group-theoretical properties. An 
example [7] is the theorem stating that if the prime p does not 
divide the order of the Weyl group of a compact connected Lie group 
Gf then G has no ^-torsion. For Ee, E7f Es the orders of the Weyl 
groups are 27*34'5, 9!*8, 10!*3*26 respectively, whence the first part of 
(11.5). Also all results known so far agree with the following con­
jecture: If p is greater than the coefficients of the highest root, ex­
pressed as linear combination of fundamental roots, then the simply 
connected group G has no ^-torsion. For the simply connected repre­
sentatives of the structures E^ E7, E8 this would imply no ^-torsion 
for £ ^ 5 , p^5, p^7 respectively. 

In this connection, let us also mention that if a compact connected 
Lie group of rank r contains an abelian subgroup isomorphic to 
(Zp)

k with k>r, then it has ^-torsion [ l l ] ; in application Es has 2-
torsion. Also, if H*(G, Z2) has a simple system of s universally trans-
gressive generators, then it does not contain a subgroup isomorphic 
to (Z2)' with t>s; the upper bound of t is equal to s for G = U(n), 
SU(n), Sp(n), SO{n) (any n), G2, F^. In other cases, the connection 
between abelian subgroups of type (p, • • • , p) and ^-torsion is not 
as simple. Anyway, in all examples known to the author, it seems to 
be true that G has ^-torsion if and only if it has an abelian subgroup 
of type (p, • • • , p) not contained in a maximal torus. 

The connections between Weyl groups and homology suggest some 
problems about the former. Viewed as a transformation group of the 
universal covering Rr of a maximal torus T of a compact connected 
Lie group G of rank r, the Weyl group is a finite linear group, gener­
ated by reflections in hyperplanes, which is moreover "crystallo-
graphic," i.e. it leaves a lattice of rank r invariant or, equivalently, 
is represented by matrices with integral coefficients in a suitable 
basis. Conversely, every crystallographic group generated by reflec­
tions is a Weyl group, as was checked by E. Stiefel [74] and later on 
given an a priori proof by C. Chevalley (C. R. Acad. Sci. Paris vol. 
227 (1948) pp. 1136-1138) and Harish-Chandra (Trans. Amer. Math. 
Soc. vol. 70 (1951) pp. 28-96, Theorem 1). We recall that two locally 
isomorphic, not isomorphic, groups have isomorphic Weyl groups but 
different lattices [74]. We have seen (§9) that the ring of invariant 
polynomials with real coefficients of a Weyl group W{G) has r alge­
braically independent generators ( r = dimension of the vector space 
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on which W(G) operates, i.e., the rank of G). This can in fact be 
proved directly for all finite groups generated by reflections (Cheval-
ley), crystallographic or not. In the crystallographic case, it does not 
seem to be known whether a similar result is valid for invariants with 
integral coefficients in the symmetric algebra over Z of an invariant 
lattice: also, the invariants of a finite group generated by reflections 
of a vector space over a field of characteristic p have not yet been 
considered except to prove that Chevalley's theorem holds true for 
a group obtained by "reduction mod p" from a Weyl group W, given 
by integral matrices, when p is prime to the order of the group [7]. 

Added in proof. For Chevalley's theorem, see a forthcoming note 
of his in the American Journal of Mathematics. 

An interesting question about Weyl groups also arises in connec­
tion with a result of Bott [13]. Let G be a compact, connected and 
simply connected Lie group and 0# the space of closed paths on G, 
with a fixed origin. Then Bott has proved that OG has no torsion, and 
moreover he gives an explicit method to get the Betti numbers of 
Q.G out of the "diagram" of G (i.e., essentially the planes of reflections 
of the elements of W(G) and the invariant lattice). On the other hand, 
these Betti numbers can be read off from the degrees of the invariants 
of W(G) with real coefficients (using Chevalley's theorem and spec­
tral sequences arguments). Thus a connection between these degrees 
and the diagram which so far has been proved only with the help of 
rather difficult topological methods. For more details and other prob­
lems about these finite groups, we refer to G. C. Shephard [72]. 

13. Cohomology of homogeneous spaces. The most comprehensive 
result on the real cohomology of a homogeneous space is due to H. 
Cartan [20] (see [2, §26] for a topological proof). It says that 
iJ*(G/Z7, R) (G compact connected, U closed connected) is isomor­
phic to the cohomology ring of the tensor product H*(Bu, R) 
®H*(Gf R) relative to a certain coboundary operator completely 
(and explicitly) determined by the transgression in EQ and by a 
homomorphism which turns out to be equivalent to p*([7, G). Many 
particular results obtained previously by Samelson, Leray, Koszul 
can be derived from it, either directly or using Koszul's theory of 
homology of 5-modules [42]. Particular cases of H. Cartan's theorem 
are to be found in [65]. 

Cartan's theorem shows how to compute H*(G/U, R), knowing 
H*(G, R), H*(U, R), and p*(U, G), i.e. in the last analysis out of 
group theoretical information, namely the invariants of the Weyl 
groups of G and U and the position of a maximal torus of U in a 
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maximal torus of G. This reduction of cohomology theory to group 
theory has not been yet achieved in characteristic p^O (except how­
ever for characteristic classes of the tangential structure, see §14); 
the best tools presently available are spectral sequences ; one of them 
[2, Théorème 22.1 ] is so to say a weak analog of H. Cartan's algebra 
mentioned above and it seems possible that H. Cartan's theorem is 
also valid mod p when G and U have no ^-torsion or, more generally, 
when their cohomology rings mod p are generated by universally 
transgressive elements. 

The proof of (C) in §9 also gives information on H*{G/U, Zp) 
when G and U have the same rank and no ^-torsion [2, §§29, 30]. 
In that case G/U has no ^-torsion, H*(G/U, Zp) is isomorphic to 
the quotient of Iu®Zv by the ideal generated by the elements of 
strictly positive degrees in IG®ZP, and its Poincaré polynomial is 

Pp(G/U, 0 = (1 - t2mi) • • • (1 - /2wv)-(l - / 2 n i ) _ 1 • • • (1 - * 2 M 0 - \ 

(2WI — 1, • • • , 2mr — 1) (resp. 2wi — 1, • • • , 2nr — 1) being the de­
grees of the primitive elements in H*(G, Z0) (resp. H*(U, Z0)). This 
is valid in particular for p = 0 and the last equality is then the Hirsch 
formula, conjectured by G. Hirsch, proved by H. Cartan-J. L. Koszul 
[20; 42] and by J. Leray [49] (see also [2, §26]). Also, if only Uhas 
no ^-torsion then G/U has no ^-torsion and (13.1) is again valid al­
though the multiplicative structure may be rather different. Similar 
statements are valid for integral cohomology when the assumption 
"no ^-torsion" is replaced by "no torsion." These results allow us to 
describe rather completely the cohomology of certain classical coset 
spaces, like complex Grassmann manifolds or complex quadrics [2, 
§31]. 

In §9 it was pointed out that results similar to (C) hold for the 
cohomology mod 2 of the orthogonal groups and their classifying 
spaces if maximal tori are replaced by maximal abelian subgroups of 
type (2, • • • , 2). This analogy can be pushed further and leads in 
certain cases to results paralleling those above for H*(G/U, Z2) when 
G and U have the same "2-rank," i.e., have a maximal abelian sub­
group of type (2, • • • , 2) in common. One gets a "Hirsch formula" 
mod 2, in which degrees of primitive elements are replaced by degrees 
of the members of simple systems of universally transgressive gener­
ators [3]. 

At the other extreme so to say is the case where U is a circle. 
Koszul had shown that P^{G/Tl, t) (G compact semi-simple) is ob­
tained from Po(G, t) simply by writing (1 +t2) for (1 +/3) ; this follows 
also from H. Cartan's theorem, which moreover gives the multiplica-
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tive structure of H*(G/Tl, R). The cohomology mod p of that quo­
tient can also be investigated when H*(G, Zp) has a simple system of 
universally transgressive generators; here PP(G/U, t) is PP(G, t) with 
one of the factors (l+t2k+1) replaced by ( 1 + / + • • • +/2&), but 
k may now be ^ 1 and its value depends in fact on the position of 
subgroup in the group. This case has not yet been treated in the 
literature but it is quite analogous to, only slightly simpler than, the 
study of the quotient G/Zp, which is done in [5, §10]; the common 
feature of these two problems is that H*(Bu, Zp) is or is "almost" a 
ring of polynomials with one generator. 

14. Characteristic classes of homogeneous spaces. A coset space 
GIU is a differentiate manifold; hence we may consider the Pon trj a-
gin or Stiefel-Whitney classes of its tangential structure, or also its 
Chern classes when it carries an almost complex or a complex analytic 
structure invariant under G. It turns out that they can be expressed 
by means of group theoretical invariants, namely, by roots [9], We 
content ourselves with some brief indications, assuming familiarity 
of the reader with the theory of roots of complex or compact semi-
simple Lie algebras (see e.g. [26; 74; 81]). The roots are usually de­
fined as linear forms on the Lie algebra of a maximal torus T but they 
can in a natural way be identified with elements of Hl(T, Z), and, 
via transgression, with elements of H2(G/T, Z). Now to any system 
of positive roots (a*), (i = l, • • • , m, dim G = dim T+2tn), there is 
associated a complex analytic structure on G/T (about which more 
will be said in §15), invariant under G. Its ith Chern class is then the 
i th elementary symmetric function in the a / s . If G and its closed con­
nected subgroup U have the same rank and if G/ U carries an invari­
ant complex analytic structure, then the map ƒ* induced by the 
natural projection of G/T onto G/ U maps the ith Chern class on the 
ith elementary symmetric function in the roots of G which are not 
roots of U. Similariiy, the Pon trj agin classes are symmetric functions 
in squares of roots (and vanish for G/T). When G and U have 
different ranks, one must take the roots of G with respect to a 
maximal torus of U. The Stiefel-Whitney classes (mod 2) may be 
also connected with symmetric functions not exactly in the roots but 
in what may be called the "2-roots," i.e., essentially the characters 
of a maximal abelian subgroup of type (2, 2, • • • , 2) in the adjoint 
representation. These facts are interesting for G/T, where they allow 
us to establish relations between topological properties, theorem of 
Riemann-Roch, and formulas of representation theory [9]. 

15. G/T and related spaces. Cellular decompositions. We say that 
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a compact manifold has a cellular decomposition if there is a partition 
of M into a finite number of embedded submanifolds Af », the "open 
cells," each homeomorphic to some affine space, and having a set-
theoretical boundary made up of open cells of strictly smaller dimen­
sions. The closures of the open cells then form a cellular decomposi­
tion of M in the sense of combinatorial topology. In the same way a 
compact complex analytic manifold has a complex analytic cellular 
decomposition if the Mi are embedded complex analytic submani­
folds, bi-holomorphically homeomorphic to complex affine spaces. 
In his Thesis [33 ] Ehresmann constructed complex analytic cellular 
decompositions for certain algebraic homogeneous spaces (Grass-
mann manifolds, complex quadrics, S0(2n)/U(n), Sp(n)/U(n), and 
some others), using Schubert systems. This can be done in fact for all 
algebraic varieties which admit a transitive compact semi-simple 
group of complex analytic homeomorphisms, by a group theoretical 
method [6]. The manifolds in question are the quotients G/U, where 
G is compact semi-simple and U is the centralizer of a toral subgroup 
of G. The complexification Gc of G also operates on G/U, and the 
latter may be identified with a quotient of Gc by a complex subgroup 
V containing a maximal connected solvable subgroup L of Gc (and, 
conversely, every quotient Gc/V with VZ)L is algebraic); the group 
L is generated by a Cartan subalgebra and the root vectors cor­
responding to a system of positive roots. The open cells are then just 
the orbits of L acting in the obvious way on Gc/V; they are also 
birationally and biregularly equivalent to complex affine spaces, and 
it follows that these coset spaces are rational varieties; this last fact 
was first proved by M. Goto [37] and, as a matter of fact, precisely 
by construction of the open cell of highest dimension. Among these 
spaces we find G/T, where T is as usual a maximal torus of G} which 
may also be written Gc/L. In this case the cells are in 1-1 correspond­
ence with the elements of the Weyl group W(G) of G, which implies 
that the Euler-Poincaré characteristic %{G/T) of G/T is equal to the 
order of the Weyl group. This gives a new proof of a result of A. Weil 
(C. R. Acad. Sci. Paris vol. 200 (1935) pp. 518-520) which was later 
proved again by Hopf-Samelson [39]: more precisely [39] gives 
x(G/ U) for any coset space G/ U with G compact, but this follows by 
easy fiber bundle arguments once x(G/T) is known. (Added in proof. 
The previous cellular decomposition of G/T is also obtained in a paper 
by C. Chevalley on simple groups, to appear in The Tohoku Math­
ematical Journal.) 

Since they carry a complex analytic cellular decomposition, the 
coset spaces considered above have no torsion, a fact first proved by 
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R. Bott [13], who moreover gives an expression of the Poincaré 
polynomial of the space computable out of the diagram of singu­
lar elements of G. Both procedures are group theoretical but have 
the disadvantage of not yielding any information on the cup-product 
in H*(G/U, Z). For G/T another approach has been devised by 
Bott and Samelson [14]. They first construct a space, say F#, of the 
same dimension as G/T, which is a multiple fibering with 2-dimen-
sional spheres as fibers, and whose cohomology ring is determined by 
the Cartan integers of G. Then they prove the existence of a map ƒ 
of degree 1 of Y G onto G/T, and show that the 1-1 image of/* is a 
direct summand completely characterized by the expressions of the 
roots of G as linear combinations of fundamental roots. It may be 
hoped that this will for instance allow one to prove a priori a fact 
checked by the author [7] for all simple groups G: If p is strictly 
greater than the coefficients of the dominant root, expressed as sum 
of fundamental roots, then H*(G/T, Zp) is generated by 1 and by 
H2(G/T, Zp), and, consequently, BG has no ^-torsion, when G is 
simply connected. 

Ehresmann [34] and Nordon [61 ] have studied cellular decom­
positions of some real algebraic manifolds, notably the real "flag" 
manifolds 0(n)/0(ni)X • * • XO(nk) (« i+ • * * +nk=n). A new 
difficulty arises because the cells may have all possible dimensions 
and are not always cycles, so that incidence numbers must be com­
puted. It was shown that these cells are cycles mod 2 and that all 
torsion coefficients of the integral homology groups are equal to 2. 
These cells may also be defined as orbits, in essentially the same way 
as in the complex case, and it might have some interest to know 
whether this method extends to a wider class of real algebraic coset 
spaces and if so, whether these spaces have the same torsion prop­
erties as the flag manifolds. 

16. Homogeneous complex spaces. In connection with the mani­
folds discussed in §15, we now digress slightly to report on recent 
investigations about homogeneous complex spaces. 

A coset space G/U is homogeneous complex (resp. homogeneous 
kahlerian) if it carries a complex analytic structure (resp. and a 
kahlerian metric) invariant under G. The quotients G/ U {G compact, 
U centralizer of a torus) considered in §15 are exactly the compact 
homogeneous kahlerian spaces with finite fundamental group and 
are in fact all simply connected. We have pointed out that they are 
rational algebraic varieties; they have been studied from a different 
point of view by J. Tits [77; 78]. 

More generally, Wang [79] has determined all compact simply con-
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nected homogeneous complex spaces. These are precisely the even 
dimensional quotients G/ U where G is compact and U is (locally) the 
product of a torus T8 by the semi-simple part of the centralizer of 
some torus (containing Ts of course, but possibly bigger). Among 
them we find the even dimensional compact groups, a particular case 
also discussed by H. Samelson [68]. In the nonalgebraic case, not 
much is known about compact homogeneous complex spaces with 
infinite fundamental group: if it is algebraic, then it is globally a 
direct product of a rational coset space (see above) by an algebraic 
complex torus (not yet published by the author) ; if it is homogeneous 
kahlerian, then it is locally the product of a torus by a simply con­
nected kahlerian homogeneous space [52]; if the compact complex 
manifold is "complex parallisable", it is the quotient of a complex Lie 
group by a discrete subgroup [80 ]. 

In the noncompact case, some results have been obtained about 
homogeneous kahlerian or homogeneous symplectic (i.e. carrying an 
invariant nondegenerate closed exterior 2-form) coset spaces. For in­
stance [6 ], if G is semi-simple, with maximal compact subgroup K, 
then GIU is homogeneous kahlerian if and only if U is compact, cen­
tralizer of a torus, and G/K is hermitian symmetric. (For hermitian 
symmetric spaces, see [l0].) Related results are obtained by Koszul 
[43 ] who investigates necessary conditions for a homogeneous space 
to carry a nondegenerate 2-form derived from an invariant volume 
element, in the same way as Bergmann's metric is derived from the 
kernel function. Under that assumption, he moreover proves e.g. that 
if G is effective, then its center must be discrete. 

A bounded domain in Cn carries a kahlerian metric (the Bergmann 
metric) invariant under all complex analytic homeomorphisms; hence 
it is homogeneous kahlerian whenever it is homogeneous complex. 
E. Cartan determined all those which are symmetric ([17], see also 
[l0]). They are products of irreducible ones, the latter ones being 
exactly the quotients G/K (G simple noncompact, K maximal com­
pact subgroup) where K has a nondiscrete center. To be more accu­
rate, E. Cartan had checked case by case (except for possibly two 
cases) that all these spaces are equivalent to bounded domains; 
recently this has been proved a priori, by a general argument, for 
all of them by Harish-Chandra (yet unpublished). E. Cartan posed 
the question as to whether there are bounded homogeneous domains 
which are not symmetric. Only partial answers have been given so far: 
the bounded domain G/ U is symmetric if the linear isotropy group is 
irreducible [50] (also contained in [43]) or if G is semi-simple 
[6; 43]. 
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17. Noncompact Lie groups and their coset spaces. A fundamental 
theorem due to E. Cartan-Malcev-Iwasawa (see [67] for references) 
states that a connected Lie group G is homeomorphic to the direct 
product of a maximal compact subgroup K by a euclidian space. 
More precisely, there exists a subspace F homeomorphic to Rm such 
that each g £ G may be written in one and only one way as product 
k-fy with &£i£, f(~F, depending continuously on g. We write 
G = KF or G~KRm. Moreover, every compact subgroup of G is 
conjugate by an inner automorphism to a subgroup of K. 

The circumstances are more complicated for a coset space G/U, 
even when U is connected. Let us write 

G = K-R; U = L -R* 

(Kf resp. L, compact maximal inG, resp. [7, K 3 L). 

Then 5 ^ t and G/ U has the same homological properties as K/LXRs~l 

[4], and in fact K/L is a deformation retract of G/H [58]: this im­
plies in particular that G/U has at most 2 ends in Freudenthal's 
sense [4 ]. The space G/ U is homeomorphic to the product K/LXRS~* 
when s — t = l [4] or also when G is solvable (Chevalley, see [57]; 
G/U is then a product of circles and straight lines). I t is natural to 
ask whether the above decompositions of G and U may be chosen in 
a "coherent" way, i.e., with Rf(ZR\ This apparently difficult ques­
tion has not yet been fully answered. Mostow [58] has shown, under 
a rather often fulfilled condition, which might conceivably be super­
fluous, that there exist subspaces E, F of G, homeomorphic to 
euclidian spaces, generated, by means of the exponential, by sub-
spaces of the Lie algebra of G invariant under the inner automor­
phisms of L, such that 

G = KFE, U = L F . 

It follows that G/U has a fibering with base K/L and typical fiber 
E = Rs~t. Mostow's condition is that U be "self-adjoint modulo the 
radical R(G) of G," i.e., UR{G)/R{G) must be invariant under one 
characteristic involutive automorphism of the semi-simple group 
G/R(G). This condition is always fulfilled when U is semi-simple 
[59]. It has also been shown in [58] that if G/U is acyclic (i.e., as is 
easily seen, if and only if K = L) then G/U is homeomorphic to a 
euclidian space (without any other condition on U). Some acyclic 
homogeneous spaces are discussed in [15]. 

The quotients G/U, with G connected noncompact, U noncon-
nected, have been investigated so far only when G is nilpotent [54; 
55; 60], or solvable [57]. In the former case G/U is the product of 
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a euclidian space by a compact homogeneous space of a nilpotent 
group; in the latter case there exists a subgroup [7* of finite index of 
[7, containing the commutator group of U, such that G/U* is the 
product of a euclidian space by a compact coset space of a solvable 
group. The example of the Möbius strip shows that one may have 
to go to a covering to get a product decomposition. Since a connected 
and simply connected solvable group G is homeomorphic to euclidian 
space (see e.g. [18]), it is immediately seen that G/U is a classifying 
space, in the sense of §8, for its fundamental group U/Uo, (U0 con­
nected component of the identity in U). It follows then from stand­
ard facts of fiber bundle theory that if G/ U and Gf/ U' (G, G' simply 
connected solvable) have isomorphic fundamental groups, then they 
have the same homotopy type. If they are moreover compact, then 
they are actually homeomorphic [57]. When G, G' are nilpotent 
simply connected, and U, U' are discrete, this homeomorphism is in­
duced by an isomorphism of G onto G' carrying U onto U' [54], but 
this need not be so in the solvable case. Malcev has proved that a 
nilpotent Lie group G has a discrete subgroup U with compact 
quotient G/ U if and only if its Lie algebra has rational constants of 
structure, relative to a suitable basis; this is not generally true for 
solvable groups, in fact, the affine group of the real line has no dis­
crete subgroup with a compact quotient, as may be seen without 
difficulty. 

A compact coset space G/ U with infinite fundamental group is not 
in general the quotient of a compact Lie group, and little is known 
about its homological properties, except for nilpotent G. In that case 
G/U is orientable and its Euler-Poincaré characteristic is ^ 0 [60]; 
the second property is also shared by the quotients of compact groups 
[39] and it is not known whether this is true for all compact homo­
geneous spaces. For nilpotent G again, H*(G/U, R) is isomorphic to 
the cohomology ring of the Lie algebra of G modulo the Lie algebra 
of U, in the sense of Chevalley-Eilenberg; this had been proved by 
Matsushima [55] in dimensions 1, 2 and was generalized by K. Nom-
izu [60] for all dimensions. Here again, easy examples show that it 
may be wrong for solvable G. Even in the nilpotent case, H*(G/ U, R) 
is not always isomorphic to the cohomology ring of invariant differ-
entiable forms [60], in contrast with E. Cartan's result [ l6] about 
compact groups G. 

A discrete subgroup is the fundamental group of the quotient of 
a connected nilpotent (resp. solvable) Lie group if and only if it is a 
torsion free finitely generated nilpotent group [54], (resp. the ex­
tension of a torsion free finitely generated nilpotent group by a 
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finitely generated free abelian group (H. C. Wang, Discrete subgroups 
of solvable groups I, to appear in the Annals of Mathematics)). 

18. Homotopy groups of Lie groups. The nth homotopy group 
Trn{X) or 7Tn(X, P) of a space X is the set of all homotopy classes of 
continuous maps of the w-dimensional sphere Sn into X, sending a 
fixed point of Sn onto a fixed point PÇîX, endowed with a suitable 
law of composition (see e.g. [73]), which is commutative for n^2. 
The group iri(X) is the fundamental group of X, it is also abelian 
when X is a topological group (or an üZ-space). wn(XX Y) is the direct 
sum of TTn{X) and irn( Y) ; also a space and a covering space have iso­
morphic nth homotopy group for n^2. Hence, taking into account 
the theorem recalled at the beginning of §17, it is enough, when deal­
ing with Lie groups, to consider compact semi-simple (or even simple) 
Lie groups. 

In the introduction, we mentioned H. Weyl's theorem to the effect 
that 7Ti(G) is finite for G compact connected, semi-simple ( [8 l ] ; see 
also [69] and [67] for references to other proofs). Extending Weyl's 
argument further, E. Cartan [18] showed that 7r2(G)=0. It follows 
also directly from the fact that the space of loops on G has no torsion 
(for simply connected G) [13]; it can also be obtained by an easy 
homotopy sequence argument from the absence of torsion on G/T, 
discussed in §15. Bott 's result also implies that 7r3(G) = Z , for G com­
pact connected, simple, non-abelian. 

By use of Morse theory, Bott and Samelson have obtained the fol­
lowing result on 7r4(G), for G compact connected, simply connected, 
simple. Let T be a maximal torus, Rr its universal covering, Y the 
inverse image of the identity of T in Rr, and let a be the dominant 
root with respect to some lexicographic order of the roots of G. Then 
7T4(G) = Z 2 (resp. 7r4(G) =0) if the hyperplane a = l has a point (resp. 
no point) of V (yet unpublished). 

I t was pointed out several times that the cohomology ring over the 
reals of a compact connected Lie group G is an exterior algebra gen­
erated by Y elements (Y = rank G) of odd degrees, say (w») (1 SÎSY). 
In other words, H*(G, R) is isomorphic to the real cohomology ring 
of a product of spheres of dimensions Wi, • • • , tnr, which will be de­
noted by XG- This of course leads to the problem of knowing to what 
extent G and XQ have similar properties. L. S. Pontrjagin [63] 
showed that SU{n) ( » ^ 3 ) , which has the same integral cohomology 
ring as Xsu(n), is not the product of 53 by some space, hence is not 
homeomorphic to Xsu(n). His proof used homotopy, but the theorem 
can also be obtained in the framework of homology, by showing that 
there is a nonzero Steenrod square Sq2 in H*(SU(n), Z2). In a similar 
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way, Steenrod's reduced powers allow one to show that Sp(n) 
(n^2) is not homeomorphic to XsP(n) [12]. The groups G2, F±, E%, 
having torsion, are not homeomorphic to the corresponding products 
of spheres, and it is rather likely to be also true for £6, E7 so that 
finally it seems highly probable that no simple group of rank > 1 is 
homeomorphic to a product of spheres. 

However, G and XG have many common properties, discovered by 
J-P. Serre [70]. For instance, there exists a map of G into XG which 
induces an isomorphism of Tn(G) ®Z0 onto irn(Xo) ®ZQ (G is compact 
semi-simple, connected). Known results on spheres show then that 
the rank of 7rn(G) is equal to the number of m* (as defined above) 
equal to n (n^l); in particular, wn(G) is finite if n^nti ( l ^ i ^ r ) , 
e.g., if it is even. Let G be compact connected, simply connected 
semi-simple, of dimension m and rank r. Then if p^m/r — 1, there is 
a map of XG into G which induces an isomorphism of the ^-primary 
component of 7rn(Xö) onto the ^-primary component of irn(G) (n^2) 
([70, §5], we have also included the exceptional groups in the state­
ment by making use of [7]) ; moreover, if G is a classical group, such 
a map exists only if p^m/r — 1 [70] ; however, the latter inequality is 
not necessary for the exceptional groups, because it follows from 
Toda's result 7rio(G2) ^Zz (see below) that there is such a map for 
G — Gi, and p=*3 (see [70, last remark]). 

The foregoing gives all known homotopy properties having a gen­
eral character. Other results have been obtained for the classical 
groups, G2, F^ by extensive use of homotopy theory. We summarize 
the main ones. 

First, we remind the reader of the isomorphisms (5.1) and we recall 
the isomorphisms 

m(S0(m)) = Ti(S0(n)) 

Ti(SU(m)) = in(SU(n)) 

iri(Sp(m)) = TTi{Sp(n)) 

Ti(G2) = ir*(Spin (7)) 

wiiFi) = T< (Spin (9)) 

ia (Spin (9)) = wi (Spin (7)) 

( » , » è » + 2) 
(», » è (« + l)/2), 
n, m =g (i — l ) /4), 

(*' ^ 5), 

(* ^ 6), 

(« ^ 13), 

which follow from the homotopy sequence of the fiberings: 

S0(n)/S0(n - 1) = 5_ i , SU(n)/SU(n - 1) = S2„-

Sp(n)/Sp(n - 1) = 5to_i, Spin (7)/ft = S7, 

F4/Spin (9) = W, Spin (9)/Spin (7) = Su 
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where Wis the projective plane over the Cayley numbers (see [l] for 
the last three fiberings). 

The following table lists the groups Ti(G) for i ^ l 3 , G a classical 
group of G2, F± as given to the author by H. Toda. We write m, 
for Zm and Z respectively. Some of these results had been established 
previously by several authors: For SU(2) = 5 3 , see notably [71; 73]; 
H. Toda, Jour. Inst. Polyt. Osaka City Univ. vol. 3 (1952) pp. 4 3 -
82, C. R. Acad. Sci. Paris vol. 240 (1955) pp. 42-44, 147-149; J-P. 
Serre, C. R. Acad. Sci. Paris vol. 234 (1952) pp. 1243-1245. For 
7T4, 7T5, 7T6 of the classical groups, see [73; 32; 12] respectively. The 
groups iri(SO{n)), Ts(SO(n)) have been determined by Serre [71 ], 
Sugawara [75; 76], Paechter (not yet published), the two last named 
authors giving also the value of wg(SO(n)). In [76] we also find par­
tial information on 7Tio(SO(n))y 7rii(SO(n)) and [ 12] gives also some 
results on ^-primary components of higher homotopy groups of the 
classical groups. 

8 10 11 12 13 

SU (2) 
SU (3) 
SU (4) ! 
SU (5) 
SU (6) 
SU (7) 
Sp (2) 
Sp (3) 
SO (8) 
SO (9) 
SO (10) 
SO (11) 
SO (12) 
SO (13) 
SO (14) 
SO (15) 
G2 

F* 

2 
0 
0 
0 
0 
0 
2 
2 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

2 
00 

00 

00 

00 

00 

2 
2 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

12 
6 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
3 
0 

2 
0 
00 

00 

oo 
oo 
00 

00 

00 -f- 00 

00 

oo 
CO 

00 

oo 
oo 
oo 

0 
0 

2 
12 
24 
0 
0 
0 
0 
0 

2+2+2 
2+2 

2 
2 
2 
2 
2 
2 
2 
2 

3 
3 
2 
CO 

00 

00 

0 
0 

2+2+2 
2+2 
oo+2 

2 
2 
2 
2 
2 
6 
2 

15 
30 

120+2 
120 

3 
3 

120 
3 

24+24 
24 
12 
6 
3 
3 
3 
3 
3 
0 

2 
4 
4 
0 
oo 
00 

2 
00 

oo+2 
oo+2 

00 

00 

oo + oo 
00 

00 

co 

oo+2 
oo+2 

2+2 
60 
60 

360 
720 
0 

2+2 
2 
0 
0 
12 
2 

2+2 
2 
0 
0 
0 
0 

2+4+2 
6 
4 
4 
0 
oo 

4+2 
2 

2+2 
2 
2 

2+2 
2+2 

2 
oo 

0 
3 
0 

In this connection, let us mention a question raised by J-P. Serre: 
As far as homology or infinitesimal theory are concerned, the groups 
SO(2n + l) and Sp(n) "differ only with respect to the prime 2." Is it 
then true that in(S0(2n + l)) and Tn(Sp(n)) have isomorphic p-
primary components for all odd primes? Using the above results, 
Serre has proved that it is indeed the case for n = S. For n = l, 2 it is 
of course implied by (5.1). 
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Very little is known about homotopy groups of homogeneous 
spaces, and up to now, only those of the Stiefel manifolds have been 
subject to rather systematic investigations, see J. H. C. Whitehead, 
Proc. London Math. Soc. vol. 48 (1944) pp. 243-291, vol. 49 (1947) 
pp. 479-481; [32]; [44] and a forthcoming paper of G. F. Paechter. 
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