
THE STRUCTURE OF TOPOLOGICAL SEMIGROUPS 
A. D. WALLACE 

The title of this address might incline one to the notion that here 
is to be found a small number of large theorems. To the contrary, I 
shall talk about a large number of small theorems. Actually, there 
does not exist a t this time any corpus of information to which the 
title "structure of topological semigroups" is in any fashion applica­
ble. Whether such a body of theorems will ever exist is a matter for 
the future and is likely to depend on the use to which it might be 
put as well as to the tastes of mathematicians who are not yet such. 

When the investigation of topological groups began there was at 
hand a theory of abstract groups and much of a fundamental char­
acter in Lie groups was available. Beyond this there existed a great 
body of geometry even if some of it was in a nebulous state insofar 
as the then held standards of rigor were concerned. 

With topological semigroups the situation is quite contrariwise. 
Here we are faced with a lack of satisfactory algebraic results. I do 
not think that there are so many as twenty-five papers each exceed­
ing ten pages which are concerned exclusively with the algebraic 
aspects. 

We are more fortunate than were the pioneers who forayed the 
frontiers of topological groups in that we have at our disposal a 
greater wealth of topology. Much that they could not—or at least 
did not—use is a t hand for our use. Furthermore we can rely, at least 
if for no more than analogy, on their results. The state of both alge­
braic and set-theoretic topology is a somewhat happier one now 
than then. Still we are likely to be troubled for awhile for lack of 
something like Haar measure without which we shall be at a loss for 
representation theorems. At present there seems to be no line of 
attack on the representation problem and it is probable that we 
shall need to rely to a greater extent on geometry and topology than 
was the case with groups. 

1. Introduction. My interest in this field began many years ago 
when, as a graduate student, I first learned of the beautiful theorem 
of E. Cartan, 

If an n-sphere is a topological group then n = 0, 1 or 3. 
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No thought is required of a graduate student to turn this into an 
all-embracing question— 

What spaces admit what algebraic structures? 
But my training and a few simple examples indicated that more 

progress was likely to be made if the question were reformulated ; 
What compact connected Hausdorff spaces admit a continuous asso­

ciative multiplication with unit? 
The question is still a large one. We shall concentrate on other, 

and shorter, themes and leave the original as a basso ostinato, an 
insistent reminder not to stray too far, in our development, from the 
announced problem. 

A mob is a map ( = continuous function) m: SXS—>S such that 
(i) 5 is a Hausdorff space and 
(ii) m is associative. If we write xy = m{x, y) then (ii) becomes the 

more familiar (xy)z = x(yz). 
A word about terminology is in order. One commonly uses such 

phrases as "G is a compact topological group" when, of course, G is 
actually a set. Tradition will be followed here and we will use "S is 
a compact mob" in place of a longer and more correct form. 

A clan is a compact connected mob with a (two-sided) unit. A 
schematic theorem of the sort that interests me is as follows: 

THEOREM. HI: S is a clan 
H2: Topological 
C: Algebraic. 

Let us say that a space is indecomposable if it is not the union of 
two closed connected proper subsets. We commonly think of inde­
composable spaces as being monstrous things created by set-theoretic 
topologists for some evil (but purely mathematical) purpose. 

THEOREM. HI: S is a clan 
H2: S is indecomposable 
C: S is a group. 

A manifold is a locally Euclidean space. Surely manifolds and in­
decomposable spaces are antipodal points in the sphere of topology. 
But we modulate from the tonic minor of the pathological (by way 
of algebraic topology) to the dominant major of the commonplace to 
obtain this result, 

THEOREM. HI: S is a clan 
H2: S is a manifold 
C: S is a group. 
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Of course not all theorems of interest fall into the scheme we indi­
cated. Let Rn be ^-dimensional Euclidean space. Denote the (set-
theoretic) boundary of the set A by F (A). Now if u is the unit of the 
clan S let H(u) be the set of all elements of S with (two-sided) in­
verses relative to u. As we shall see later H(u) is a compact group. 

THEOREM. HI: S is a clan 
iJ2: S is topologically contained in Rn, w ^ 2 . 
C: H(u)CF(S). 

With this introduction we turn to the pedestrian task of indicating 
in more detail what has been accomplished thus far in mobs. We 
shall make a definite effort to show that there are few domains of 
topology into which mob-theory has not penetrated. We shall not 
mention the work of Eckmann, Hopf, Leray, Borel and others dis­
cussed by Samelson in his invited address [25]. The applications to 
analysis were discussed by Hille in his Colloquium Lectures [13]. 

A word about notation and terminology. In general, topological 
meanings will have precedence of algebraic ones. We use A * for the 
topological closure of A so that "A is closed" means A—A* and not 
A2C.A. We denote the null set by • , 0 and • being homeomorphic. 
The symbol A\B is used rather than A—B for the complement of 
B in A. "Compact" will be used for "bicompact." A space is con­
nected if it is not the union of two nonvoid disjoint closed sets. 

2. Maximal subgroups. I t is natural to examine first those sub­
structures of the mob 5 {and in all that follows S will be a mob) with 
which we are most familiar. A subgroup of S is a nonvoid set A 
satisfying xA—A=Ax for all XÇLA. With the aid of the Hausdorff 
Maximality Principle (or Zorn's Lemma) one readily proves [32]: 

THEOREM 2.1. Each subgroup of S is contained in a maximal such 
and no two of these intersect. 

I t may happen that S contains no subgroups. But when S is com­
pact there is a t least one. Now a subgroup is a self-contained object, 
and, in order to bring into play all of 5, we say that a set L(ZS is a 
left ideal if L ^ D and if SLQL. Here, AB= {xy\xÇ:A and yÇiB} or 
AB—m(AXB). Similarly one defines right ideal and (two-sided) 
ideal. We shall denote by K the (unique if it exists) minimal ideal of 
S and by E all those e £ 5 such that e2 = e. Recall that if 5 has a (two-
sided) unit it is designated by u. If e is an idempotent (i.e., e(E.E) let 
H(e) be the maximal subgroup of S containing e. 

THEOREM 2.2. If S has a minimal left and a minimal right ideal then 
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S has a minimal ideal K and 

K = U {H(e)\e^Er\K). 

Any pair H(ei), H{e?) of subgroups with ei, e%ÇzEr\K are topologically 
isomorphic. 

This result goes back to Suschkewitsch [27], Rees [24], and is due 
essentially to Clifford [3] with these hypotheses. I t is useful to note 
that H(e) =eSe if and only if eÇ,K. Recall that a space X has the 
fixed point property if each m a p / : X—>X provides an a £ X such that 
f (a) =a. When the hypotheses of Theorem 2.2 subsist and if S has 
the fixed point property, then KQE. I t is interesting to know what 
properties of S are inherited by K. Thus if S is an absolute retract 
(absolute neighborhood retract) in the sense of Borsuk, is K also one 
such? This is true if, for example, 5 is abelian or indeed if S contains 
a (nonvoid) normal subset because then K = eSe and the function 
x—>exe retracts 5 onto K} see Clifford-Miller [5] and Koch [IS]. We 
shall see later that, if S is a clan, then the cohomology structure of K 
is exactly that of 5. 

The maximal subgroups of 5 seem rather mysterious beings. Here 
is a result reformulated from Green [ l2] . 

THEOREM 2.3. Let, for x€zS, 

T(x) = xSnSxH {y\x£ySr\Sy}. 

Then T(e) =H(e) if eÇ.E and T(x) is a maximal subgroup if and only 
if T(x) is a submob. 

THEOREM 2.4. Let S be compact and let 

H = U {H(e)\eGE}. 

Then H is closed. If x £ i l let y(x) be the unit of the unique maximal 
subgroup containing x and let 6(x) be the inverse of x in this group. Thus 

xy(x) = x = y(x)x, 

x6(x) = y{x) = 6{x)x, 

y(y(x)) = y(x), 6(6(x)) = *. 

Then y : H—>E is a retraction and 6 : H—tH is an involutorial homeo-
morphism. 

This result (see [32]) shows that H has a "continuous unit" and a 
"continuous inverse." It is a corollary that when S is a compact 
algebraic group it is also a topological group. It does not yet seem to 
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be known if "locally compact" can replace "compact" in the last 
sentence. A useful algebraic analysis of H can be found in Clifford 
[2] under the condition that HHCH. 

There is a sort of dual to Theorem 2.4 (see [l; 9; 18 and 34]). Let 

PCS) = {x\ xS = 5*}, QÇS) = {x\Sx = S}. 

THEOREM 2.5. Let S be compact and let P(S) ^ D - Then 

PCS) = U {H(e)\eeEnP(S)} 

and each pair of the groups H(e\), H(e%) are topologically isomorphic. 
Indeed, if eoÇzEC^P(S), there is a topological isomorphism 

PCS) = H(e0) X ( £ A P ( J ) ) . 

Moreover EC\P(S) is the set of left units of S. Finally P(S) ^ Q^Q(S) 
if and only if S has a unit and then P(S) =H(u) = Q(S). 

In a sense Theorem 2.5 is "best possible." For if G is a compact 
group with unit e and if X is a compact space with multiplication 
xy=y for all x, yÇzX, then S = GXX is a compact mob, using co­
ordinate-wise multiplication. We have E = E(S) = {e} XX, P(S)~S, 
and each maximal subgroup of S is GX {x}, # £ X . 

I t is a corollary to Theorem 2.5 (Gelbaum-Kalisch-Olmsted, 
Iwasawa, Peck) that a compact mob with two-sided cancellation is 
a topological group. 

The results in this section do not exhaust our knowledge of the 
structure of 5 related to its maximal subgroups. We cite without 
further comment the papers of Faucett [8], Numakura [21 ], Koch 
[15; 16] and Koch-Wallace [ l7]. The maximal subgroups will con­
tinue to appear as we proceed. 

3. Submobs. We define, for x £ S , 

Tn(x) = {*», xn+\ • •• }*, 

r(*) = r i(*) , 

K(x) = fi {?n{x)\n^ l } . 

Because of its elegance, simplicity, and useful character we state 
first a result which can be materially strengthened (Koch [15], 
Numakura [21 ], Peck [23]). 

THEOREM 3.1. If T(x) is compact, then K(x) is the minimal ideal of 
T(x) as well as the unique maximal subgroup of T(x). If 0(x) 
= {x, x2, • • • } then 
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r(x) = K(x) U {0(x)\K(x)} 

and 0(x)\K(x) is a discrete open subset of T(x). 

The first person to examine the structure of T(x) seems to have 
been Koch [15] from whose results we quote the following. 

THEOREM 3.2. (a) If T(x) is locally compact and is either zero-
dimensional with unit or an algebraic group, then T(x) is a compact 
topological group. 

(b) If T(x) is compact, then any one of the following is sufficient 
to imply that T(x) is a group: 

(i) T(x) has a unit. 
(ii) r (x) is connected. 

(iii) T(x) =T(a) for some a^x. 
(iv) {x} is not open in T(x). 

Koch [ló] has been able to generalize Theorem 3.1 in an interest­
ing fashion but lack of space does not allow inclusion of this result. 

Of capital importance in group-theory is the device of "translat­
ing" to the identity. This is not possible in mobs and an ingenious 
substitute for this is due independently to Koch [15] and Numakura 
[21]. 

THEOREM 3.3. IfT(x) is compact and if A is a compact set such that 
xA C.A, then 

eA = fi {xnA | n ^ 1} 

where e is the unit of K{x). 

We can "dualize" this result as follows (see [34]). 

THEOREM 3.4. Let T{x) and A be compact. If ACxA, then y A =A 
for each yÇzT(x) and each such y acts as a homeomorphism on A. 

Both of these results have two-sided analogues (see [34]) and an 
interesting interpretation connecting them with a result due to G. T. 
Whyburn [37]. They also have extensions to the case of a mob acting 
on a space, [17] and [34]. 

I t is a corollary to Theorem 3.1 that if 5 is compact then E ^ D -
This result has been used by Wendel [36] to show Haar measure 
exists on a compact group. 

THEOREM 3.5. Let S be compact, let J be a nonvoid family of nonvoid 
sets of S and let R = U { r | T&j). If 

(i) Tx, T2GJ implies TzCTxr\T2for some T*EJ and if 
(ii) tER and TE.J imply TxCtT and T2CTt for some Th T2EJ, 
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then 

is a group and the minimal ideal of the smallest closed submob of S con­
taining R. 

This result, a manifest extension of (3.1), is a generalization of a 
theorem of Peck's [23]. It has several reformulations which the 
reader may find for himself or in [34]. 

If 5 is a mob and if G is an algebraic subgroup of 5 when is G a 
topological group, i.e., under what conditions on G or S can we 
assert that inversion is continuous in G? The first important result 
of this kind stems from Montgomery and asserts that if G is separable 
metric and complete then G is topological [19]. Other versions have 
been given by Ellis [7], N. J. Rothman (unpublished), and Moriya 
[20]. The latter's theorems can be extended as we shall see in (3.6) 
and (3.7). 

Recall that a space is rim compact if each point has a neighborhood 
basis of open sets with compact boundaries. A rim compact Haus-
dorff space is completely regular. This follows from the fact that if 
X is one such and if A is a closed set with a compact boundary, then 
A has a neighborhood basis of open sets with compact boundaries. 
We recall that a space is locally connected if each point has a neigh­
borhood basis of connected sets. 

Despite several published assertions that "a countably compact 
mob with two-sided cancellation is a topological group" there re­
mains some doubt as to the validity of this claim. The techniques of 
McShane [41 ] and Pettis ([42], [43] and [44]) may be useful in this 
connection as well as in the problem just raised concerning the 
continuity of inversion. The results of Rothman were obtained, in 
part, in this framework. 

THEOREM 3.6. If G is a maximal subgroup of S and if S is locally 
connected and rim compact, then G is topological. 

THEOREM 3.7. If S is a locally compact algebraic group and if the 
unit-component of S is compact, then S is topological. 

We can extend (3.7) in the manner of (3.6) but we select this 
special case so that we may indicate a proof. Since the unit-com­
ponent C of S is compact there is a compact open set I O C Let 
T== {x\xVQV}. I t is easy to see that T is an open and closed sub-
mob ([28] and [31 ]) and is compact because u£V. Now T has two-
sided cancellation because S has this property so that (remarks fol-
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lowing (2.5)) T is an open topological subgroup. Thus inversion is 
continuous at u and, since x—*x~l is an antihomomorphism, its con­
tinuity a t u implies its continuity on S. 

The methods in this proof are of general application. The reader 
will note that V might have been selected inside any open set about 
C and so as a corollary we have the familiar result that any totally 
disconnected locally compact group contains arbitrarily small open 
compact subgroups. The fact that S was an algebraic group did not 
appear until the last two sentences so we can say that a locally com­
pact totally disconnected mob with unit has arbitrarily small open 
compact submobs containing the unit. We can easily generalize this 
to the case where the component of 5 containing an idempotent is 
compact. 

The familiar process of dividing a group by its unit-component has 
a mob-theoretic version. Let S be a locally compact mob with each 
component compact. If T is the component space of S we construct 
in an obvious way a continuous multiplication in T and a (continu­
ous) homomorphism ƒ of 5 onto T. Of course T is locally compact 
and totally disconnected. The map ƒ is closed but need not be open. 

The use of sets like {x |x4n .Z?7^n} is typical. This device seems 
indicated as a replacement for the use of BA"1 with which the above 
set would be identical were S a group. It is interesting to carry 
through (as far as possible) the result from topological groups that, 
if A is compact and if B is closed, then AB is closed. 

4. Ideals. One easily sees that any left ideal meets any right ideal. 
Hence the collection of all ideals of S has the finite intersection prop­
erty and it follows that if S is compact then 5 has a minimal closed 
ideal. Now it is almost obvious that, in this case, any ideal contains 
a closed ideal. Thus S has a minimal ideal if it is compact. Further 
5 has minimal left and right ideals, Numakura [21 ]. One way of 
characterizing minimal ideals is as follows (Koch [15]): 

THEOREM 4.1. Let e CUE- These are equivalent: 
(i) Se is a minimal left ideal. 

(ii) Se S is the minimal ideal. 
(iii) eSe is a maximal subgroup. 

Numakura [22] initiated the investigation of nil-elements in a 
mob with zero and some extensions and completions have been given 
by Koch [16]. One can say that xÇzS (S with zero) is nil if 0£T(x ) . 
I t is possible to extend Theorem 4.1 in various ways using the notion 
of nil-elements. Despite the interest and importance of this material 
we are impelled by its lack of definitive status to go no further in this 
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direction. A purely algebraic situation has been considered by Clif­
ford, Rich, and Schwarz (see bibliography in [4]). 

Maximal ideals were first investigated by Koch and Wallace [17]. 
They are of great importance both structurally and as a tool. If 
A C.S let L(A) be the union of all left ideals of 5 contained in A. Of 
course L(A) may be null. The primary weapon here is the fact that 
if A is closed then L(A) is closed and if A is open and if S is compact 
then L(A) is open. One has (see [ l l ] and [17]) 

THEOREM 4.2. If S is compact and if S properly contains an ideal, 
then S has a maximal proper ideal J. If S has a unit then J = S\H(u). 

There are many variations on this theme and many applications of 
the concepts involved and we shall illustrate with some typical theo­
rems. 

THEOREM 4.3. If S is compact, if S2 = S, and if E has at most one 
element, then S is a group. 

We note that if S is connected then / of Theorem 4.2 is dense in 
5 and hence we have ([17] and [31 ]) 

THEOREM 4.4. If Sis a clan, then S\A is connected for each A C.H(u). 

Let us agree that a continuum is a compact connected Hausdorff 
space. A notable result of R. L. Moore's (see [3l] for a generaliza­
tion) is that a nondegenerate continuum has at least two non-cut-
points. Hence a compact connected group has no cutpoint. Theorem 
4.4 extends this asserting that, if S is a clan, then no point of H(u) 
cuts 5. 

In order to show a typical way of using ideals we shall prove that 
if a clan is indecomposable then it is a group (see§l, [17], and [33]). 
We suppose that S^H(u) and it follows that KC\H(u) = D- Let U 
be an open set about u with U*C\K = • and let J be the union of 
all ideals of S contained in S\U*. Thus / is open and connected 
[17] and J* is a continuum not all of S. There are two cases. If 
S\J* is connected, then S = J*KJ(S\J*)* so that 5 is the union of 
two of its proper subcontinua. If 5 \ J * is not connected then S\J* 
—A\JB where A and B disjoint, open, and nonvoid. By a familiar 
result we know that A^JJ* and B^JJ* are closed connected sub­
sets of 5 so that again S is decomposable. 

In the study of continua one is led to consider C-sets. A C-set is 
such a subset C of S that if A is a subcontinuum meeting C then 
CCA or AC.C. The composants of an indecomposable continuum 
are C-sets. From [45] we have the 
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THEOREM 4.5. Let S be a clan and let Cbea C-set. 
(i) If Cr\K^U then CQK. If C = K then K is a group. 

(ii) If Cr\H{u)^U then CCH(u). If e<£E and if H(e) is non-
degenerate then CC\H{é)9^]L] implies CQM{e). 

With the aid of some results which involve a type of set related to 
the C-sets one can prove, for example, the following. 

THEOREM 4.6. Let S be a clan and let H(u) be totally disconnected. 
Then S is semi locally connected [37] at each point of H(u) and may 
possibly not enjoy this property at no point not in H(u). 

I t may be seen by an example that, if H(u) is connected, then 5 
may be semi locally connected at no point. 

A sequence of results, combining the structure of continua with 
clans, has been obtained by W. M. Faucett [8]. Many of these in­
volve the use of maximal ideals. Here are some typical ones. 

THEOREM 4.7. Let S be a continuum, let q(E.S\K, and let Q be the 
component of S\ {q} containing K. Then qS, Sq, and SqS are all con­
tained in QSJ {q}. 

Now qS is an algebraic object and Q^J{q} is a topological one so 
that the inclusion qS(ZQ\J{q} links these two types of things. 

I t follows that if q2 = q and if L is the union of all left ideals con­
tained in S\{<?}, then (S\Q)qQL*\L. If also Q is a left ideal then 
(S\Q)q={q}. 

THEOREM 4.8. Let S be a locally connected metric continuum and let 
J be a maximal proper ideal of S. If S\J contains at least two points, 
then some arc in S has only its end points in S\J. 

Finally Faucett has proved 

THEOREM 4.9. Let S be a clan which is irreducibly connected between 
two elements of E. Then S is abelian if and only if it has a zero element. 

It ought to be noted that we have presented simplified versions of 
Faucett 's results in the interest of clarity. 

We close this section with an example in which we apply some of 
the above results. Let 5 be the subset of R2 consisting of those points 
(x, y) with ^ = sin (x~x)f x ^ l , together with the segment from (0, 1) 
to (0, — 1). Note that C is a C-set of S. We show that 5 cannot sup­
port the structure of a mob with unit. Suppose this is false. By (4.4) 
we know that w £ C or u is the end point of 5. If uÇ^C then C(ZH(u) 
by (4.5) (ii). If D is the component of H(u) containing C, then D is a 
group and hence homogeneous. But clearly no closed connected sub-
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set of 5 containing C can be homogeneous. Hence u is the end point 
of 5. We may write 5\C*=U{.4<|*==1, 2, • • • } where AXCA2 

CAz • • • and Ai is an arc with u as one end point. For each i we 
know tha t AiC is a locally connected continuum containing C and 
thus AiC = C. Thus C = ( S \ C ) C and C* = (5\C)*C = 5C. Similarly 
C=CS. Thus C is an ideal and hence KCC By (4.5) (i) CC.K and 
i£ is a group. But C is not homogeneous. 

5. Algebraic generalities. The definitions which we now give are 
to be used in the next section. They have, it may seem, no a priori 
intuitive raison d'etre. 

Let X be a space and let G be some discrete additive abelian group. 
If n^O let 4> and \[/ be any two functions on Xn+1 into G. We define 
an addition by 

(4> + lW(ffO, Xl, • • • , Xn) = <K#0, Xi, • • • , Xn) + iKffo, «1, • ' • , -X ») . 

We let 0(x0, #i, • • • , Xrc)=0£G and (—0)(#o, #i, • • • , #W) 
= —0(xo, x\, - • • , xn). With these operations the set Cn(X, G) of a// 
functions on Xw + 1 to G becomes a group. A function 0 £ O ( X , G) is 
locally zero if, for each x G Z , there is an open set U about x such that 
0(*o, xu • • • , xn)=0 if G £/. If </>£Cn(X, G) we define 
a function <l>'GCn+1(X, G) by 

n+l 
0'(#O, tfi,-'*, ffn+l) = S ("-1)*0(*O, ' ' ' , #*-l> «i+li * * * , #n+l) 

where ( — l)ng=g if n is even and ( — l ) n g= —g if # is odd, g being 
any element of G. The set of all $ £ C n ( X , G) such that 0 ' is locally 
zero is denoted by Zn(X, G). A simple argument shows that Zn(X, G) 
is a subgroup of Cn(X, G). We define next a subgroup Bn(X, G) of 
Z*(X, G) by taking £°(X, G) = 0 and by stipulating that 0 £ £ W ( X , G) 
(w>0) if 0—^' is locally zero for some ypÇî.Cn~~l(X, G). Here we need 
the fact that (\f/,)f=0 and the fact that, since 0—^' is locally zero, 
(<£•—i/O' is also locally zero. Finally we let 

H»(X, G) =Z»(X, G)/Bn(Xy G). 

The group Hn{X, G) is the ^-dimensional Alexander-Kolmogoroff 
cohomology group of X with coefficients in G. Modulo some easily 
verified assertions the reader has had a brief and painless (if un­
motivated) construction of a cohomology group. We refer to Spanier 
[26], who gave the first exposition of this theory, for details. Further 
results will be found in [26; 28; 29 and 30 ]. 

We shall now sketch some salient items of the AK theory to be 
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used in the next section. We sometimes conceal the coefficient group 
G so that Hn(X, G) becomes Hn(X). If/: X-+Y is a map then one 
defines a homomorphism ƒ * : Hn(Y)-*Hn(X) roughly as follows: If 
<t>GZn(Y) let (J* 0)(*o, *i, • • • , xn)-4>(f(xo)f f(xx), - • • ,ƒ(*»)) and 
pass to the quotient group. In particular if AC.X and if i: AQX is 
defined by i(x)=x, then i*: Hn(X)-+Hn(A) is called the natural 
homomorphism. While the elements of Hn{X) are not functions 
(though those of Zn(X) are functions) it is useful to employ a func­
tion-like notation. If hÇzHn(X) and if A C.X we let A| -4 be the image 
of h under the natural homomorphism. 

If X is compact Hausdorff and if h^Hn{X) is not zero, then there 
is a t least one closed set AC.X such that h\A^0 but h\Ao = 0 if 
Ao=Ao*CA and A0?*A. We call A a floor for h (see [28] and [29]). 
If A ~A*CX and if h<£Hn(A) is such that for no h0GHn(X) do we 
have ho\A—h, then for a t least one closed set RQX we know that : 

(i) If hQGHn(RUA) then hQ\A^h, and 
(ii) if Ro=Ro*CR and if R0^R then for some hoGHn(R0\JA) we 

have ho\A =h. We call R a roof for h (see [28] and [29]). We may 
say that h<G.Hn(A) is extendable to Hn{X) (or to X) if h is the image 
of some element of Hn(X) under the natural homomorphism 
H»(X)-+H»(A). 

6. Cohomology in clans. Earlier we raised the question as to what 
properties of S were inherited by K, the minimal ideal of 5. If S is a 
clan then the natural homomorphism of Hn(S) into Hn(K) is an iso­
morphism onto for any n. This is a consequence of the more general 

THEOREM 6.1. If S is a continuum with left unit and if L is a closed 
left ideal of S such that hSCL for some / o£S , then the natural homo-
morphism of Hn(S) into Hn(L) is an isomorphism onto [35]. 

Of course in the above we have left out "for each n and each co­
efficient group." 

We obtain from this the 

COROLLARY. If S is a clan and if eÇzE, then 

Hn(S) « Hn(eS) « Hn(eSe). 

Now suppose that w>0 , that hÇzHn(S), and that S is a floor for h. 
If eÇzEC\K and if eSe^S then h\eSe = 0, contrary to the isomor­
phism of the corollary. So eSe — S and 5 is a group. Now a manifold 
M has the property that for some n > 0 and some coefficient group 
G there is an hÇLHn{Mi G) with M a floor for h. Thus if a clan is 
locally Euclidean it is a group, as we stated earlier. 



!955l THE STRUCTURE OF TOPOLOGICAL SEMIGROUPS 107 

There are some curious applications of (6.1). Let us say that a 
topological lattice is a pair of maps, V > XXX-+X and A > I X I - ^ I , 
satisfying the usual conditions. Let us suppose that X is compact 
Hausdorff. We readily verify that the intersection of the family of 
sets {a\/X\aÇzX} is a single element, a unit for X. Dually X has a 
zero. If we let C be any component of X then C is also a topological 
lattice and hence C is a clan and so Hn(C) = 0 for n > 0. It follows easily 
that Hn(X)=0 for n>0. Thus all compact topological lattices are 
cohomologically trivial. With the aid of some earlier results we can 
also prove the 

ALPHABET THEOREM. If the letters of the alphabet are written in 
block capitals, then only those letters homeomorphic with I can be topo­
logical lattices. 

With the aid of (6.1) one can exhibit finite-dimensional homogeneous 
continua that are not clans. I t is an open question whether or not a 
finite-dimensional clan which is also a homogeneous space is a group. 

Following Haskell Cohen we define the codimension of the compact 
Hausdorff space X (relative to G) by cd(X, G)£n if Hn(X, G) 
—>Hn(A, G) is onto for all closed AQX. Cohen [6] has justified this 
definition by proving the expected theorems and relations. 

I t is perhaps reasonable to think that if N is a "large" subgroup 
of S then the structure of N ought to approximate that of S. For 
example, let 5 be a clan and let F be a nonvoid open set contained 
in H(u). I t may be seen that the translates of V by elements of H{u) 
must fill H(u). Hence H(u) is both open and closed and thus H(u) =S 
because S is connected. Thus if H(u) contains a non-null open set 
then the approximation of H{u) to S leaves nothing to be desired! 
The next result leads to a proof that, under suitable conditions, the 
approximation is good but need not be devastatingly so. In Theorem 
6.2 and its corollaries it is assumed that S is a continuum and that 
cd(5, G)^n (see [35] and Topological invariance of ideals in mobs, 
Proc. Amer. Math. Soc. vol. 5 (1954) pp. 866-868). 

THEOREM 6.2. Let A be closed in 5, let p, qGS, and define f : A-^qA 
byf(x) =qx. IfheHn(qA, G) andif h\ {pAC\qA) = 0, then f {h) = 0. If 
also q2=iq and qACA then h = 0. 

COROLLARY 1. Let N be a closed set in S with Hn(N, G) = 0 and with 
NQhNfor some hÇzS. Then K, the minimal ideal of 5, is also a min­
imal right ideal and K contains every floor of every nonzero h(~Hn(N} G) 
and each such floor is a left ideal for S. If also NCfaN for some t2ÇzS, 
then K is a group and is the unique floor f or each nonzero hÇzHn(N, G). 
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COROLLARY 2. Let also S have a unit and let N be a closed subgroup 
of S with Hn(N, G) = 0. Then K = N, K is a homomorphic retract of 
S (Clifford-Miller [5]) and H*(S, G0)~H»(N, Go) for any p^O and 
any Go. 

ZUSATZ ZUM ZUSATZ. Let S and T be clans and let ƒ : 5—>T be a 
homeomorphism onto. If cd(5, G)^n and if Hn(Sf G) -^0, then f maps 
the minimal ideal of S onto the minimal ideal of T. 

It is easy to see by an example that ƒ need not be homomorphic. 
In the space ZXR of one complex and one real coordinate (using 

coordinate-wise multiplication) let C be the set of all (s, t) with 
I z\ = 1 and £ = 0 and let W be the set of all (0, t) with Z = exp (2wia), 
t = exp ( — a), a^O. One easily shows that CKJW is a clan. Now with 
the same space and any multiplication suppose that S==C^JW is a 
clan. We shall show that C is the minimal ideal of S and that u is 
the end point of S. We apply Corollary 1 and its "left-right dual" 
and infer from Hl(C, G ) ^ 0 (any G^O), that C = K. If uEK then 
S = H(u). But clearly S cannot be a group. By Theorem 4.4 we see 
tha t u is the end point of S. 

An immediate result of Corollary 2 is that if S is a clan, if 
cd(5, G) ^ n , and if ilw(il(w), G) T^O, then S is a group. A more rapid 
and direct proof of this is as follows. In the exact sequence of the 
triple (5, H(u)KJK, K) we have Hn(S, i £ ) = 0 by (6.1) and 
H"+ 1(S, H(u)\JK) = 0 since cd SSn. Hence Hn(H(u)\JK, K) = 0 . If 
S is not a group then Kr\H(u) = • by (2.5). By excision Hn(H(u) 
\JK, K)~Hn(H(u)). 

An inspection of examples lends credence to the idea that, if S is a 
clan, then in some intuitive sense H(u) is contained in the "bound­
ary" of S. In certain cases we can make this exact [34]. 

THEOREM 6.3. If S is a clan topologically contained in Rn (n}£2)» 
then H(u)CF(S), the boundary of S relative to Rn. 

THEOREM 6.4. If S is a clan topologically contained in Rn (n ^ 2) and 
if I is a closed ideal containing F(S), then I = S. 

In the remainder of this section let S be a clan. 
Let us say that AGS is covariant if A is closed and if H(u)AH(u) 

C.A. I t is not hard to see that, if/(^4)C^4 for each homeomorphism 
ƒ of S onto 5, then A is covariant if A =A*. If A is covariant then 
SASr\H(u)=Ar\H(u) and hence AC\H(u)^U implies H(u)CA. 
On the other hand if I is an ideal containing A then AQSASQI. 
Thus, when A is covariant the following are equivalent: "H(u)(ZA" 
"H(u)r\A 9* D " and "No proper ideal of S contains A." So (6.3) and 
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(6.4) are the same, because of Brouwers theorem on regional invari­
ance, and either follows if we can show that ff(w)nF(5)^D. We 
shall now show how it is possible to make an extension. For this 
purpose we need some lemmas. 

LEMMA 1 [28]. Let X be fully normal and let A be closed. If R 
is a roof for hEHn(A), n>0, then Ris a roof for h\ RC\A, (R\A)* = R, 
and R\A is connected. 

For a fixed n > 0 and a fixed coefficient group G we shall say that 
xÇ~Fn(X) provided that if U is an open set about x then there is an 
open set V about x with VQ U such that the natural homomorphism 
of Hn{X) into Hn(X\V) is onto. If X is a closed set in Rn+1, then 
F(X)=Fn(X) where F{X) is the boundary of X in Rn+\ see [28]. 
Further we say that X is of type Fn (of course relative to the obscured 
coefficient group) if for each closed AQX we have F(A)C.Fn(A), 
where F means boundary in X. 

LEMMA 2 [28]. Let X be fully normal, let A be closed, and let Rbe a 
roof for some element of Hn(A), n>0. If F(R)CFn(R), then R\A is 
open and F(R\A) =RC\A. Hence if RKJA ^X, then A cuts X into the 
sets X\(RyJA) and R\A and the latter is connected. 

A slightly different form of this result was found by J. W. Keesee 
[Proc. Amer. Math. Soc. vol. 5 (1954) p. 193]. 

LEMMA 3. Let X be a compact Hausdorff space of type Fn and let A 
be a closed set with null interior which does not cut X. If some hÇzHn(A) 
is not extendable to Hn(X), then X is a roof for h and Fn(X) QA. 

PROOF. Let R be a roof for h. If R\JA y*X then A cuts X, by 
Lemma 2. Since this is impossible, RSJA —X. By Lemma 1, R=X 
since ^ 4 ° = D . If x(£Fn(X) and if xÇ£X\A, then, for some open set 
V about x not meeting A, the natural homomorphism Hn(X) 
—>Hn(X\V) is onto. Since X is a roof for h we know that h is ex­
tendable to Hn(X\V) and hence to Hn(X), a contradiction. 

THEOREM 6.5. Let S be of type Fn and let some hÇzHn(H(u)) be not 
extendable to Hn(S), e.g., Hn(S)=0 and Hn(H(u))^0. Then Fn(S) 
CH(u) and if F*(S) ^ D then Fn(S) =H(u). 

From Lemma 3 we see that Fn(S)CH(u). Thus, if Fn(S) ?*D, then 
H(u)CFn(S) since Fn(S) is clearly covariant. 

An examination of set-theoretic analogs of such theorems as (6.5) 
will tend to throw some light on this situation. If S is irreducible (as 
a continuum) about the closed set A then ACS A S implies 5-45 = 5 
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because SAS is a continuum. Hence, in virtue of the earlier remarks, 
H(u) CA if A is also covariant. Now S is irreducible (as a continuum) 
about the closure, A, of the set of its non-cutpoints and since A is 
covariant, then H(u)C.A. The set A is a sort of "boundary" for S. 

On the basis of (6.5) and an unpublished result of R. H. Bing it 
can be shown that if SQRn, n^2, and if H(u)=F(S) then H{u) is a 
Lie group and H(u) irreducibly cuts Rn into the two connected sets 
S\H(u) and Rn\S. 

7. Conclusion. I t is likely that we have said those things which we 
ought not to have said and we have left unsaid those things which 
we ought to have said. In the latter category lie the algebraic results 
of Clifford, Dubreil, Green, Miller, Rees and Schwarz and Susch-
kewitsch. The papers of the Russian mathematicians are not available 
to me. Many results have been announced by French students of the 
subject. The reader may consult Mathematical Reviews. 

I am greatly obliged to Professor D. D. Miller for his kindness in 
communicating the results of some theses prepared under his direc­
tion. The notion of a maximal subgroup and a maximal ideal appear 
in the elegant 1950 thesis of Helen B. Grimble. 

The work of R. E. Allan, on quotient mobs, which will form a 
part of his dissertation, is not yet in a sufficiently complete state for 
exposition. 

Aside from those to whose results formal recognition has been 
given, I record here with gratitude both the indirect and immediate 
aid of various members of the Tulane Topology Seminar and mem­
bers of the faculty. 

Finally, it is my great pleasure to acknowledge the support of this 
work, insofar as it involves the Tulane group, by the Office of Naval 
Research. 
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