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dromy theorem which is based on the Riemann mapping theorem. 
The selection of material from a rich field always involves a question 
of choice. An account of Riemann's classic work on the hypergeo-
metric functions would have found a fitting niche in this chapter 
(cf. Ahlfors, Complex analysis) but its omission is certainly under
standable. 

The seventh chapter treats entire functions and meromorphic 
functions in the finite plane. The material treated includes the well-
known expansion theorems of Weierstrass and Mittag-Leffler, 
growth questions, and the Picard theorems treated via the Bloch 
theorem. The remaining two chapters treat elliptic functions, the 
gamma and zeta functions, and Dirichlet series. 

This brief account of the book indicates its scope and point of view. 
As we have remarked there is an abundance of exercises on which the 
good student may sharpen his mathematical teeth. He will have more 
than one occasion to test his skill with category arguments. On the 
other hand, the reader will note an absence of the treatment of the 
more delicate boundary problems which appeal either to a refined 
use of the topology of the plane or to methods involving Lebesgue 
integration. This is of course in accord with the stated program and 
intent of the book. 

This book is a very welcome addition to the collection of texts on 
the theory of analytic functions which are now available in English. 
I t will be a rewarding experience to the earnest student. 

MAURICE H E I N S 

The stability of rotating liquid masses. By R. A. Lyttleton. Cambridge 
University Press, 1953. 10 + 150 pp. $6.50. 

Ever since Newton deduced from his theory of gravitation that 
the shape of the earth must be an oblate spheroid, there has been in
tensive research into the question of the possible equilibrium shapes 
of rotating liquids. Maclaurin and Clairaut showed that for any value 
of angular momentum a spheroid is a possible equilibrium form. In 
1834 Jacobi showed that if the angular momentum is greater than a 
certain amount an ellipsoid with three unequal axes is also a possible 
form of relative equilibrium. 

The question of the stability of these equilibrium forms was first 
investigated by Poincaré in 1885. There are two different kinds of 
stability possible for rotating systems, known as "secular" and 
"ordinary" stability. To explain the distinction, consider a system 
rotating with constant angular velocity co and assume it has n degrees 
of freedom q = (qh q2, • • • , qn) relative to a set of axes rotating with 
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angular velocity co. 
In rotating systems the usual potential energy V must be replaced 

by the quantity V—o)2I/2 where I is the moment of inertia of the 
system. The equilibrium conditions are 

(V w27) = o. 
dqn\ 1 ) 

For small displacements from equilibrium we may assume that 

V-±«*I=(q,Bq) 

where B is a real symmetric matrix and the parenthesis denotes the 
usual real scalar product. We shall assume also that the kinetic energy 
relative to the rotating axis is 

T - y ( j , Aq) 

where the dots denote differentiation with respect to the time / and A 
is a real symmetric, positive definite matrix. If there are no external 
forces and if friction is neglected, then the equations of motion will be 

(1) Aq + œGq + Bq = 0 

where G is a real skew-symmetric matrix. The term coGg is the so-
called gyroscopic term. Its presence is due to the fact that the equa
tions of motion are written in a rotating, and not a static, set of co
ordinate axes. 

The free oscillations of the system can be found by substituting 
q — euqç) in equation (1). We get 

(2) (\2A + coXG + B)q0 = 0. 

This will have a nontrivial solution if 

(3) det (K2A + coXG + B) = 0. 

Since the transpose of X2-4 +o)\G+B is \*A —ookG+B, and since the 
determinant of a matrix and its transpose are equal, it follows that—X 
is a root of (3) if X is; consequently (3) is an polynomial equation 
inX2. 

The rotating system is said to be ordinarily stable if all the values 
of X2 which satisfy (3) are real and negative. In that case, all free 
oscillations are bounded and the system oscillates in the neighborhood 
of equilibrium in response to any disturbance. 
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Write (2) as follows: 

(4) (\A + coG + JBX-̂ go - 0. 

Since A, B, and G are matrices with real elements, the complex con
jugate of this set of equations is 

(5) (kA + wG + Bîr^qo - 0. 

Add the scalar product of (4) by £0 to the scalar product of (5) by go. 
We get 

(6) (X + X)(îo, Aio) + (X + X) | X |-2(2o, Bq0) - 0 

because (g0, Gq0) = — (go, Gqo). 
A rotating system for which B is positive-definite is said to be secu

larly stable. In this case (6) shows that X+X must be zero, that is, 
X is purely imaginary; consequently, a system which is secularly 
stable is also ordinarily stable. On the other hand, if the system is 
secularly unstable, that is, if B is not positive-definite, then equation 
(6) may be satisfied by putting 

| X | 2 = - (go, Bq0)/(qo, Aq0). 

If these values of X are also purely imaginary, the system will still be 
ordinarily stable; consequently, a system may be secularly unstable 
but ordinarily stable. 

The difference between secular and ordinary stability becomes evi
dent when friction is taken into account. In that case the equations of 
motion become 

Aq + (F + toG)q + Bq - 0 

where F is a real, positive-definite matrix. If we put g = ex'£, then just 
as before we can show that 

(7) [X + X][(p, Ap) + \\\ ~KP, Bp)] + (f, Fp) = 0. 

If B is positive-definite, then this equation implies that X+X is nega
tive, that is, the real part of X is negative; consequently, if the sys
tem is secularly stable, friction will dampen all disturbances from 
equilibrium. 

If B is not positive-definite, the bracket in (7) will become negative 
and then the real part of X will be positive and its magnitude will 
depend on the strength of the frictional forces; consequently, when a 
rotating system is ordinarily stable, frictional forces may increase the 
disturbances from equilibrium and so the system will not stay near 
equilibrium. Since this displacement from equilibrium depends upon 
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the strength of the frictional forces, the system may stay near equilib
rium for an extremely long time. For example, the lunar orbit is 
ordinarily stable but secularly unstable and its change from equi
librium under the influence of frictional forces is extremely slow. 

Poincaré showed that, as the angular momentum increased, the 
MacLaurin spheroids which were originally secularly stable become 
secularly and ordinarily unstable a t that value of angular mo
mentum for which Jacobi proved the existence of a rotating ellipsoid. 
Using ellipsoidal harmonics, Poincaré showed further that the Jacobi 
ellipsoids are secularly stable until a certain value of angular mo
mentum at which point there exist certain pear-shaped figures of 
equilibrium. 

Darwin suggested that as the angular momentum increased the 
furrow in these pear-shaped figures might deepen until the liquid split 
in two independent bodies. This fission process could be the origin of 
binary stars, planets, and satellites. I t was proved by Jeans, Liapou-
noff, and E. Cartan that these pear-shaped figures were secularly 
unstable. 

The crux of the problem, however, is whether these figures are 
ordinarily stable. Because of the small frictional forces involved in 
astronomical phenomena, ordinary stability would be sufficient to 
permit the formation of binary systems by the above method. E. 
Cartan eventually proved that these figures are ordinarily unstable. 

The book under review presents the mathematical details of the 
theory outlined above and also discusses their cosmological implica
tions. The account starts with a discussion of the stability of rotating 
system and follows with a discussion of the spheroidal and el
lipsoidal figures of equilibrium. Next, the theory of ellipsoidal har
monics and Lamé functions is developed. This theory is used to pre
sent Poincaré's and Cartan's discussion of the stability of the equi
librium figures. Finally, the author shows that the theory of binary 
fission advocated by Darwin and Jeans is untenable. 

The author is to be commended for preparing this clear, logical 
account of a subject which has excited the interest of the greatest 
mathematicians. 

BERNARD FRIEDMAN 


