
REGULAR CONVERGENCE 

PAUL A. WHITE 

1. Introduction. The notion of convergence is certainly one of the 
most important ones in all mathematics. In analysis if a sequence of 
functions converges to a limit function, we ask the question what 
properties enjoyed by the members of the sequence are carried over 
to the limit function. With no restrictions on the type of convergence, 
of course very little can be said. We, therefore, impose conditions on 
the convergence which will allow some conclusions to be made. The 
same situation prevails in topology if we consider the concept of con­
vergence of point sets. We say that the sequence of points sets (d) 
converges to the point set G, where all sets belong to a Hausdorff 
space, if the following is true. Every point with the property that 
each of its neighborhoods contains points from infinitely many d 
lies in G and each point of G has the property that each of its neigh­
borhoods contains points from all but a finite number of the (d). I t is 
easily seen that G will always be closed regardless of whether the d 
are or not. This notion was first introduced by Zarankiewicz [ l ] . An 
equivalent definition in a compact metric space is as follows. If we 
call the spherical neighborhood of a point set X with radius € the set 
of all points x whose distance from some point in X is less than e, 
then (d) converges to G if G is closed and for every e the spherical 
neighborhood about G with radius e contains all but a finite number 
of the d and the spherical neighborhood with radius e about all 
but a finite number of the d contains G. For example, the sets 
Gt={(x , y)\x = l/i, (O^y^l)} converge to G={(x, y)\x = 0, 
( O ^ y ^ l ) } . The second definition is equivalent to saying that G is 
closed and the Hausdorff distances [2] from d to the G converge to 0. 
Very few properties are carried over to the limit set by convergence 
of this general type. The reason for this is that two sets can be close 
to each other without being at all similar. For example in the above 
mentioned example the sets d could be replaced by the points of the 
line forming d tha t are rational with denominator i, and the limit 
set would still be the same. The reverse situation is not true, however, 
i.e. if all the members of the sequence in a compact metric space are 
closed and connected, then the limit set will also be closed and con-
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nected. Thus under convergence several components may be put to­
gether, but not torn apart. 

2. Regular convergence. By requiring more than just closeness in 
the convergence, a much more satisfactory situation can be achieved. 
In 1935 G. T. Whyburn gave such a definition [3] in which he made 
use of the definition of local connectivity. In his definition a sequence 
(Ai) of closed sets is said to converge regularly to a limit set A if for 
each e > 0 there exist positive numbers 5 and N such that for n>N, 
any two points in An whose distance apart is <S lie in a connected 
subset of An with diameter <e. If all the sets An in a sequence coin­
cide with the limit set Af this is the definition of uniform local con­
nectivity. Thus we require the members of the sequence to approxi­
mate each other more and more closely in the sense of local connec­
tivity as the sequence progresses. With this type of convergence it is 
possible to prove the following results. 

If (Ai) converges to A regularly, where all sets are contained in a 
compact metric space, then: 

(1) A is locally connected (whether any of the Ai axe or not); 
(2) if in addition all sets Ai are locally connected continua, then 

every simple closed curve J and every simple arc ab in A (which is 
also a locally connected continuum) is the limiting set of a regularly 
convergent sequence of simple closed curves Ju J2, • • • or arcs 
arf>i, a2&2, • • • respectively, where Jni anbnC.An; 

(3) if each Ai is an arc afci, then A is an arc ab (or a single point), 
and by a proper choice of notation (at-)—>#, (bi)—*b; 

(4) if each Ai is a simple closed curve, then A is a simple closed 
curve (or a single point) ; 

(5) if each Ai is a topological sphere, then A is a cactoid [4]; 
(6) if each Ai is a 2-cell with boundary d such that d(d)—»0 

(d(d) = diameter of C»), then A is a cactoid; 
(7) if each Ai is a 2-cell and their boundaries Ji converge to / , 

then / is a boundary curve—furthermore a necessary and sufficient 
condition for the convergence to be regular is that J be a simple closed 
curve ; 

(8) if the Ai are 2-cells with boundaries Ji that converge to / , 
then A is a hemicactoid [4] whose base set is bounded by J . 

3. r-regular convergence. The type of convergence described in 
§2 can be thought of as the zero-dimensional case of r-dimensional 
regular convergence. In order to give this definition it is necessary 
to make use of some kind of r-dimensional homology theory. In a 
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compact metric space, perhaps the most convenient theory is the one 
introduced by Vietoris [S]. 

3.1 DEFINITION. An e-sitnplex of dimension r is a collection of 
(r + l)-points whose diameter is less than e. 

3.2 DEFINITION. An e-cycle (chain) of dimension r is a cycle (chain) 
of e-simplices of dimension r. 

3.3 DEFINITION. A cycle zr is said to be e-homologous to 0 (zr~€0) 
if zr is the boundary of an e-chain Cr+l (zr = dCr+1). 

3.4 DEFINITION. TWO cycles z\ and z\ are ^-homologous to each 
other 0sî~e4) if z^ — zl^f). 

3.5 DEFINITION. An r-dimensional Vietoris cycle Vr is a collection 
of r-dimensional S^-cycles (z]) called its coordinate cycles such that 

(1) (8,)-»0, 
(2) for each e > 0 there is an integer N such that for m, n>Ny 

3.6 DEFINITION. A Vietoris cycle Vr is homologous to 0 (Vr~0) if 
for each €>0 all but a finite number of its coordinate cycles are 
e-homologous to 0. 

3.7 DEFINITION. Two Vietoris cycles V[ and VI are homologous to 
each other if for each e > 0 all but a finite number of the corresponding 
coordinate cycles are e-homologous. 

The coefficient group for the coordinate cycles is assumed to be the 
mod 2 group. However, many results hold with more general groups 
which will be noted from time to time. In no case will the coefficient 
group be more general than a commutative ring with a unit element. 

We can now give the general definition of regular convergence of 
any dimension. 

3.8 DEFINITION. The sequence of closed sets (Ai) is said to con­
verge r-regularly to A if corresponding to each e > 0 there is a positive 
integer N and a ô > 0 such that if n>N, any Vietoris cycle V', 
j^r, in a subset of A n of diameter <ô is ^ 0 in a subset of A » of 
diameter <e. 

Here again if all the sets Ai were to coincide with A, then the above 
definition would become the usual one for uniform local-j-connected-
ness for all j^r in terms of Vietoris cycles. 

This definition of r-regular convergence was also introduced by 
G. T. Whyburn [3] except that he required the condition only on 
cycles of the one dimension r. However so little results without im­
posing the same conditions on the lower-dimensional cycles that it is 
easier to include all of them in the one definition. 

I t is easily seen that in the 0-dimensional case this definition is 
equivalent to the regular convergence of §2, since in a compact metric 
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space a V° can be interpreted as a pair of points and being ^ 0 is 
equivalent to the pair's lying in a connected subset. Thus we have a 
true generalization of the earlier definition. 

In this type of convergence it is impossible to close up "holes" with 
r-dimensional boundaries that exist in the members of the sequence. 
For example suppose the set Ai is the set of polar coordinate points 
{(r, d)\r = l (l/iS6^2T-(l/i))}. The missing arc between 6~l/i 
and 0 = — 1/i would be called a hole with a zero-dimensional boundary, 
i.e. the two end points of the arc. This hole is gradually closed up as 
i increases so that the limit set is the entire circle which contains no 
hole with 0-dimensional boundary. This could happen because the 
convergence was not 0-regular. This follows by considering the pair 
of end points (1/i, 1) and (2ir — (l/i), 1) which may be thought of as 
0-dimensional Vietoris cycles. The diameters of these cycles —*0 as 
^—•oo, but although each is ^ 0 in its set Aiy the diameter of the 
smallest set in which this cycle is ~ 0 (namely all of Ai) is always 
2—violating the definition of 0-regular convergence. Next consider 
the sets Ai in the 3-dimensional space described in spherical coordi­
nates as follows: 1/i^p^l (i.e. all the points between and on the 2 
concentric spheres p = l/i and p = l ) . As i increases the hole inside 
bounded by the 2-dimensional boundary p = l/i is gradually shrunk 
so that the limit set is the solid sphere O ^ p ^ l . Here the 2-regular 
convergence is violated by the 2-cycles for the sphere p = l/i on Ai 
can be thought of as 2-dimensional Vietoris cycles. Now these cycles 
are contained in subsets of Ai whose diameters converge to 0, yet none 
is ^ 0 at all—contrary to the definition of 2-regular convergence. 
Notice, however, in this case that the convergence is 1-regular. Next 
consider the sets Ai in 3-dimensional space described in Cartesian 
coordinates as all points (x, y, z) such that x2+y2+z2^>2, and 
x2+i2y2-{-i2z2^l. Again as i increases the sets Ai converge to a solid 
sphere A: x2+y2+z2^2. However this time there are no nonbound-
ing 2-cycles whose diameters converge to 0 as i increases. The con­
vergence is still not 2-regular since the 1-cycles correspond to the 
circles i2y2 -\-i2z2 = 1 converge to 0 as i increases, but none is ~ 0 on 
a subset of the corresponding Ai with diameter < 1 . This time the 
convergence is 0-regular. Finally let Ai —the set of points (x, y, z) 
such that x2+y2+z2^2 and x2+y2+z2i2^ 1, as i increases again (Ai) 
converges to the solid sphere x2+y2+z2^2. This time the 2-regular 
convergence is violated because the 0-cycles correspond to the pairs 
of points (0, 0, 1/i), (0, 0, --1/i) have diameters that converge to 0 
as i increases, but again do not bound on subsets with diameters < 1 . 
In this case the 2-regular convergence is not violated because of the 
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behavior of either the 1 or 2 cycles. Thus we see that a hole with a 
2-dimensional boundary can be closed up if 2-regular convergence is 
violated by cycles of just one of the 3 dimensions 0, 1, or 2. 

4. The Betti numbers and local connectivity. A more general and 
precise description of the behavior referred to in the previous section 
can be obtained in terms of the Betti numbers. 

4.1 DEFINITION. In a compact metric space M the r-dimensional 
Betti number (pr(M)) is the maximum number of linearly independ­
ent Vietoris cycles (i.e. a number k such that d\Z\-\- • • • -\-a8Z

r
s~0 

for any s>k Vietoris cycles Z[, • • • , Zr
st and elements #i, • • • , as 

from the coefficient group; but there exist k cycles Z[, • • • , Z\ such 
that aiZ[+ ' - - +dkZl~0 implies # i= • • • =a* = 0). If no such 
maximum number exists, we say that pr(M) = oo. Now a description 
of a "hole" with a 2-dimensional boundary can be given by saying 
that the 2-dimensional Betti number is one. To say that holes can­
not be closed is included in the following theorem. 

4.2 THEOREM. If (Ai)—>A r-regularly and pr(Ai) ^n for all i, then 
pr(A)^n. 

I t is also true that holes cannot be formed under regular conver­
gence according to the next theorem. 

4.3 THEOREM. If (Ai)—*A r-regularly and pr(A) ^w, then pr(Ai) Sn 
for all but a finite i. 

These theorems are due to H. A. Arnold [6]. 
In the case of 0-regular convergence, we saw that the limit set is 

always locally connected. The following theorem states the general 
result due to G. T. Whyburn [7]. 

4.4 THEOREM. If (Ai)—*A r-regularly, and each Ai is lcr (locally-j-
connected for all j^r)t then A is lcr. 

In case the coefficient group is an arbitrary ring with a unit, 
E. G. Begle has shown [8] that the above theorem is not always true; 
but if each Ai is also required to be lcn, then the theorem is true. 

5. Manifolds. We have already seen that under 0-regular con­
vergence a sequence of the simplest manifolds, i.e. simple closed 
curves or arcs, has for its limit a manifold of the same kind (if non-
degenerate). I t is natural to consider the behavior of higher-dimen­
sional manifolds under the higher-dimensional regular convergence. 
However it is well known that no topological characterizations exist 
for the manifolds of dimension higher than 2 ; therefore, it is necessary 
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to consider generalized manifolds instead of the classical ones. A 
generalized manifold is a space which has many of the same homology 
characteristics as a classical manifold of the same dimension and re­
duces to the classical case for dimensions ^ 2 . The definition we shall 
use is due to R. L. Wilder [9]. 

5.1 DEFINITION. The compact ^-dimensional (Menger-Urysohn 
dimension—[lO]) metric space M is called a closed (orientable) n-
dimensional manifold if: 

(1) pn(M) = 1, but pn(F) = 0 for every proper closed subset F of M. 
(2) If pGM, there exists an e > 0 such that if V1 (1 ^i<^n — 1) is an 

i-cycle of the sphere S(p, e), then F ^ O in M. 
(3) If pGM, and e > 0 are arbitrary, then there exist positive num­

bers 5 and rj, e>ô>rj, such that if V1 (O^i^n — 2) is a cycle of the 
boundary of the sphere S(p, 5), then Vi^0 in S(p, e)-S(p, rj) ; if Vn~l 

is a cycle of this boundary, then Vn~1~0 in M—S(p, rj). 
By using cohomology theory E. G. Begle has given a definition 

[ l l ] that is essentially equivalent. I t is easily seen that the simple 
closed curve and 2-sphere satisfy Definition 5.1 for dimensions 1 
and 2, respectively. Conversely, Wilder has shown that a 1- or 2-
dimensional generalized manifold must be a classical one. 

Begle has proved the following theorem [8]. 

5.2 THEOREM. If Mi-* M (r —1)-regularly, where each Mi is a closed 
r-dimensional orientable generalized manifold and M is r-dimensional, 
then M is a closed r-dimensional orientable generalized manifold. 

This theorem was proved in the case where the coefficient group for 
cycles can be any commutative ring with a unit. 

In the 2-dimensional cases the following theorems can be stated. 
The first was announced by H. E. Vaughan [12] and also proved by 
Begle [8]. 

5.3 THEOREM. Let (Mi) be a sequence of closed, orientable 2-dimen­
sional manifolds and let (Mi) converge 1-regularly to a nondegenerate 
set M. Then M is a closed, orientable 2-dimensional manifold, and for 
all sufficiently large i, M and Mi are homeomorphic. 

The author has also defined a generalized manifold with boundary 
[29] and the following theorem is proved [30 ]. 

5.4 THEOREM. If S is an orientable n-dimensional generalized closed 
manifold and K(ZS is an (n — 1) -dimensional generalized closed mani­
fold such that S—K — A\JB separate, and K is the common boundary 
of A and B, then A and B are n-dimensional generalized closed mani­
folds with boundary K. 



1954] REGULAR CONVERGENCE 437 

For our purposes the result of this theorem may be used as the 
definition of a manifold with boundary, and the author has proved 
the following result [31 ]. 

5.5 THEOREM. If {Mi) is a sequence of orientable generalized n-
manifolds with boundaries {Ki), such that Mi—>M {n — 1)-regularly and 
Ki~->K {n —2)-regularly, then M is an orientable generalized n-manifold 
with boundary K. 

In the 2-dimensional case it is proved as in 5.3 that all but a finite 
number of the Mi are homeomorphic with M. Whyburn first proved 
the case where each Mi is a 2-cell, but used the following theorem to 
do it. 

5.6 THEOREM. If a sequence of 2-cells converge 1-regularly to a limit 
set, then the limit set is a base set. 

6. An alternate definition of 0-regular convergence and its gen­
eralization. Whyburn has given the following interesting character­
ization of 0-regular convergence [3]. 

6.1 THEOREM. Let the sequence of closed sets (Mn) converge to the 
limiting set M. Then in order that {Mn) converge O-regularly to M it is 
necessary and sufficient that for each sequence of decompositions Mni 

=An.+Bni into closed sets such that {Ani)—*A, (Bni)—»5, and (Ani-Bni) 
= (Xi)->X, we have A-B = X. 

No similar characterization of the higher-dimensional cases is 
known, but the following similar theorems were announced by H. A. 
Arnold [ó]. 

6.2 THEOREM. If {Mn)-*M r-regularly, then for every sequence of 
decompositions Mni~Ani+Bni into closed sets, such that the sequence 
(Xi) = (Ani'Bni)~-:>X and the sequences (Bni), (Ani)—>(r — l)-regularly 
to B and A, respectively, then {Xi)—>X {r —I)-regularly. 

6.3 THEOREM. If {M^—±M r-regularly, and {An-B^-^A-B r-regu-
larly, then {An)-+A and {Bn)->B, both r-regularly. 

7. Regular convergence in terms of Cech cycles. The use of Vietoris 
cycles ties the work to a metric space. If one wishes to break away 
from this restriction, the Cech theory of cycles in terms of coverings 
of the space by open sets can be used. The definition of local-r-con-
nectivity, r-dimensional Betti number, generalized manifold, etc., 
can all be rephrased in terms of this theory with only the assumption 
of bicompactness (every open covering can be reduced to a finite 
sub-covering). These definitions are all given in R. L. Wilder's Col-
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loquium publication [13]. Here the coefficient group is assumed to be 
an arbitrary field. 

The author has proved [14] that the theorems regarding the Betti 
numbers, local connectivity, and generalized manifolds, 4.2, 4.3, 4.4, 
and 5.2, still hold in this case. 

In proving the above results the following theorem concerning the 
existence of a normal refinement was proved. 

7.1 THEOREM. If (Ai)—>A r-regularly, then corresponding to any 
covering of the space there is a covering which is a normal refinement of 
it relative to r-dimensional Gech cycles of Ai for any i. 

Wilder defines and proves the existence of such a covering for one 
set [13], but to the author's knowledge this is the only known theo­
rem on the existence of such a refinement for an infinite collection of 
sets. 

8. Regular convergence spaces. The collection of all closed lcr sub­
sets of a compact metric space M can be made into a hyperspace Kr 

by definining the notion of convergence by means of regular conver­
gence. Thus we shall say that the sequence of points (at) of the hyper­
space converges to the limit point a if their corresponding subsets 
(Ai) converge r-regularly to the set A corresponding to a. I t is clear 
from Theorem 4.4 that the space Kr is closed relative to the similarly 
constructed hyperspace of all closed subsets of M. Also by 4.2 and 
4.3 the set Kr

n consisting of all points of Kr corresponding to sets 
whose r-dimensional Betti number is n is closed. I t is shown by the 
author [15] tha t 

(8.1) Kr is metrizable and separable. 
Begle also obtained this result independently [8] and showed that 
(8.2) Kr is topologically complete. 
Many point set properties can be related to special subsets of Kr 

as stated in the following theorems: 
8.3 If r>0, then a necessary and sufficient condition that M contain 

no simple closed curve is that Ki (the subspace of Kr corresponding to 
locally connected continua) be connected. In case M is locally connected 
this is a necessary and sufficient condition f or a dendrite [4]. 

8.4 A necessary and sufficient condition that every convergent sequence 
of arcs in M converge O-regularly is that Ki be compact. 

8.5 If M is compact, then a necessary and sufficient condition that 
every convergent sequence of arcs converge O-regularly is that correspond­
ing to every e>0 there exists a 8>0 such that if p and q are 2 points of 
M whose distance apart is <S, then every arc joining p and q has diam­
eter <€. 
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8.6 If M is a Euclidean cube of dimension ^ r + 2 and of diameter 1, 
then the subset N of Kr consisting of those subsets of M which are 
lcr+1 is of the 1st Baire category in Kr, 

9. Relation to monotone transformations. 
9.1 DEFINITION. If A is compact metric and the transformation 

T(A) —B is continuous, then T is said to be t'-monotone if for each 
bÇzByp^T-1^)) =0, i5gr . In the O-dimensional case this says that the 
inverse of every point is connected and reduces to the usual definition 
of a monotone transformation. It has been shown [4] that the mono­
tone image of 

(1) an arc is an arc, 
(2) a simple closed curve is a simple closed curve (or a point), 
(3) a topological sphere is a cactoid, 
(4) a 2-cell with boundary / is a hemicactoid with boundary curve 

ƒ ( / ) . 
Also Wilder has shown [22 ] that 
(5) the r-monotone image of a closed (r + 1)-dimensional orientable 

generalized manifold is also a closed (r + l)-dimensional orientable 
generalized manifold. 

Notice that if (Ai)—*A O-regularly and if each Ai is a set of type 
1, 2, 3, or 4, we have already stated that A will also be a set of the 
same type. Also if the convergence is r-regular and each A < is of type 
5, then A is also of that type. This suggests that there may be a rela­
tionship between monotone transformations and regular convergence. 
The following theorem due to Whyburn [7] demonstrates this rela­
tionship. 

9.2 THEOREM. Let the sequence of r-monotone transformations Ti(A) 
— Bi converge uniformly to the limit transformation T(A) = £ . In order 
that the sequence (Bi)—* to B r-regularly, it is necessary and sufficient 
that T be s-monotone, s^r, and B be an lcr. 

10. Regular transformations. Suppose A and B are compact metric 
spaces and the continuous mapping T carries A onto B. T is called 
interior [16] if it carries open sets into open sets. Eilenberg showed 
[17] that T is interior in this case if and only if for each sequence 
(bi)—>b in By (T~l(bi))—>T~l(b). A natural generalization is to require 
the convergence to be r-regular in which case the transformation is 
called r-regular. The O-dimensional case was first studied by Wallace 
[18] and the r-dimensional case by Puckett [19] and the author [20]. 
Puckett showed that if T is (n — 1) -regular, then for any two points 
b and V of B the Betti groups of dimensions ^n of Tl~1(6) and T~l(b') 
are isomorphic. The author has shown (a) that under an (» — 1)-
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regular transformation every small Vietoris cycle in B of dimension 
^n is the image of a small cycle in A. Also (b) that if the transform 
of a cycle of dimension ^(n — 1) in A is ^ 0 in a small subset of B, 
then the original cycle is ~ 0 in a small subset of A. From proposition 
(a) the following results can be proved. In each case assume T(A) =B 
is (n — 1)-regular. 

10.1 THEOREM. If the sequence of closed sets (Y^—^Y in B, then 
(T-1(Yi))—*T-l(Y) and if the latter convergence is n-regular so is the 

former. 

10.2 THEOREM. If T is factored, T=T2TU so that TX(A) = C is 
(n —2)-regular, then T2(C)=B is (n — 1)-regular. 

10.3 THEOREM. If A is lcn, then B is lcn. 

10.4 THEOREM. If A is a continuum, then T can be factored, T= T2TXf 

so that Ti(A) = C is monotone and (n — 1)-regular and T2(C)=B is of 
constant multiplicity and locally topological. 

From proposition (b) the following results are obtained : 

10.5 THEOREM. In order that T(A)=B be n-regular it is necessary 
and sufficient that for any sequence of closed sets (Yi)-^Y n-regularly in 
B, we have (T~1(Yi))—^T~1(Y) n-regularly. 

10.6 THEOREM. If T(A)=B is n-regular and YC.B is lcn, then 
T~1(Y)islcn. 

10.7 THEOREM. If Ti(A) = C and T2(C)~B are n-regular, then so 
also is T = T2Ti. 

Puckett proved the following interesting theorems [19; 21 ] in the 
0-regular case, where in each case we assume T(A)=B is 0-regular 
and monotone (i.e. the first factor guaranteed by 10.4 above). 

10.8 THEOREM. If A is a continuum, then its 1-dimensional Betti 
group is the direct sum of 2 groups U and V, where U is isomorphic to 
the 1-dimensional Betti group of B and V is isomorphic to the Betti 
group of each set T~l(b) (b is any point of B). 

10.9 THEOREM. If A is a 2-dimensional pseudo-manifold (i.e. a 
classical 2-dimensional manifold with or without boundary among q 
points of which identifications have been performed to produce r local 
separating points of A), then the following situations can occur and only 
these : 

(1) T is topological or B is a single point', 
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B = simple closed curve. 

sphere 
(2) A= Yl-cell I , B=arc; 

[circular ring) 
torus 
Klein bottle 
circular ring 

(3) A = ] Möbius band 
pinched sphere 
2-cell with 2 boundary 

points identified 

Furthermore in the above theorem the topological behavior of each 
transformation can be precisely described. In (2) of the theorem if A 
is the sphere x2-\-y2+z2 — l, then T is essentially the mapping that 
carries the circle cut by z — k ( — l ^ & ^ l ) into the point (0, 0, k) 
on the 3-axis. If A is the 2-cell x2+y2

='l, then T is essentially the 
mapping that carries the segment cut by y = k ( — l ^ & ^ l ) into the 
point (0, k) on the 3^-axis. If A is the circular ring 1 ^ p ^ 2 (polar co­
ordinates) , then T is essentially the mapping that carries the circle 
p = &, 1 g & :£ 2, into the point p = k, 0 = 0. In (3) if A is the torus ob­
tained from the cylinder x2+y2 = l, — 1 g 3 â 1, by identifying the cir­
cles corresponding to z = — 1 and z = 1, then T is essentially the map­
ping that carries the circle corresponding to z = k into the point 
(0, 0, k) of the simple closed curve obtained from the line segment 
a = 0, y = 0, - l g z g l , by identifying (0, 0, 1) and (0, 0, - 1 ) . If A 
is the Klein bottle obtained from the same cylinder by identifying 
the ends with opposite orientations, then the same transformation as 
before can be used. If A is the circular ring, 1 ^ p ^ 2 (polar coordi­
nates), then T is essentially the mapping that carries the segment 
0 = k, 1 ^ p ^ 2 , into the point d = k, p = l. HA is the Möbius band ob­
tained by cutting the above ring along 0 = 0 and applying a twist be­
fore sewing it back together, then the same T as before can be used. 
If A is the pinched sphere obtained by rotating the circle (x — l)2+z2 

= 1 about the z-axis, then T is essentially the mapping that carries 
the circle generated by the point (x, ± ( 1 — (x — I)2)112) into the point 
(x, ±(l-(x-l)2)1/2). Finally if A is the 2-cell with 2 boundary 
points identified obtained by rotating the circle (x — l)2+z2 = l one-
half a revolution about the 3-axis, then T is the same as in the pre­
ceding case with half circles going into points. 

11. Other types of regular convergence. We pointed out in §2 
that regular convergence was derived from the definition of local con­
nectedness by stringing the property out over the sets of a convergent 
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sequence. This same technique can be used on other local properties 
such as (a) r-dimensional semi-local connectedness [23], (b) complete 
r-avoidability [24], and (c) homotopy local connectedness for dimen­
sions Sr (LCr) [25]. The convergence obtained by using property 
(a) is called r-dimensional coregular convergence [26], that obtained 
from property (b) is called r-c.a. regular convergence [26], and that 
obtained from (c) homotopy-r-regular convergence [27]. It is shown 
[26] that if the convergence of a sequence of sets is (r — 1) -regular and 
r-coregular then the limit set contains no r-cut points [24]. If the con­
vergence is n-regular, i-c.a. regular for i^n — 2, and (n — 1)-coregular, 
where the members of the sequence are each w-dimensional closed 
Cantorian manifolds [28], then the limit set is a closed (orientable) n-
dimensional generalized manifold (Definition 5.1). It is shown [26] 
that in the O-dimensional case, 0-c.a. convergence implies both O-regu-
lar and O-coregular convergence for continua. Also a sequence of 2-
dimensional compact classical manifolds converge 0-c.a. regularly to 
another such manifold (or a point) and if each member of the se­
quence has n disjoint simple closed curves as boundary, then the limit 
set has m ^ n simple closed curves as its boundary—if each member is 
a sphere with n handles, then the limit set is a sphere with m^n 
handles. If the sequence converges homotopy-^-regularly where all 
members of the sequence and the limit set are L O (dimension Sp), 
then it is shown [27] that infinitely many members of the sequence 
have the same homotopy type as the limit set. Notice that it was not 
asserted that L O for the members of the sequence implies the same 
property for the limit sets, however a similar result can be shown [27], 
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