
DUALITY FOR GROUPS 

SAUNDERS MACLANE1 

I. T H E PHENOMENON OF DUALITY 

1. Abelian groups. Certain dualities arise in those theorems of 
group theory which deal, not with the elements of groups, but with 
subgroups and homomorphisms. For example, a free abelian group 
F may be characterized in terms of the following diagram of homo­
morphisms : 

( i . i ) ü * 

THEOREM 1.1. The abelian group F is free if and only if, whenever 
p: B—>A is a homomorphism of an abelian group B onto an abelian 
group A and a: F-+A a homomorphism of F into A, there exists a 
homomorphism ]3: F—>B with 

(1.2) p/5 = <*. 

If F is known to be free, with generators gi, /3 may be constructed 
by setting j3g; = &», with bi so chosen that pbi = agi. Conversely, let F 
have the cited property and represent F as a quotient group Fo/Ro> 
where F0 is a free abelian group. Choose A—F and B = Fo in (1.1), 
let a be the identity, and p the given homomorphism of .Fo onto F 
with kernel Ro. Then, by (1.2), a=p/3 is an isomorphism, hence /3 has 
kernel 0 and thus is an isomorphism of F into F0. Therefore F is 
isomorphic to a subgroup of a free group F0, so is itself free. 

The analogous theorem is true for free nonabelian groups, when 
A and B are interpreted as arbitrary (not necessarily abelian) 
groups; the proof uses the Schreier theorem [l4]2 that a subgroup 
of a free group is free. 

An abelian group D is said to be infinitely divisible if for each dÇ:D 
and each integer m there exists in D an element x such that mx = d. 
Such groups may be characterized by a similar diagram 
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(1.1') D « - £ B 

XI' 
A 

THEOREM 1.1'. The abelian group D is infinitely divisble if and only 
if, whenever X: A—>B is an isomorphism of an abelian group A into 
an abelian group B and a: A—*D a homomorphism of A into D> there 
exists a homomorphism ]3: B—*D with 
(1.20 jSX«a . 

PROOF. Let D be infinitely divisible. Since X is an isomorphism of 
A into B, the construction of (3 is essentially that of extending a 
homomorphism a of A into D to a larger group containing A ; this 
construction, using suitable transfinite methods, is well known. 

Conversely, let D be an abelian group with the property cited in 
the theorem, and let d be an element in D and m any integer. The 
cyclic subgroup Z generated by d can be embedded in a cyclic group 
B generated by an element b in such fashion that mb — d. In (1.1') 
take A = Z , a the identity, and X the identity injection of Z into B. 
There is then a /3 as in (1.2') ; if j3ô = x, then mx=j3(mb)—f3\(d) 
= a(d) =d. Hence the equation mx = d has a solution in Z>, and D is 
infinitely divisible. 

In this pair of "dual" theorems the hypotheses differ only in the 
direction of the arrows in the diagrams (1.1) and (1.1') and in the 
replacement of p, a "homomorphism onto," by X an "isomorphism 
into" ; the conclusions differ only in the direction of the arrows and 
in the inversion of the order of factors in the products (1.2) and (1.2'). 
In this sense free abelian groups3 are dual to infinitely divisible 
abelian groups. 

There are other "dual" properties of free and infinitely divisible 
abelian groups. Any subgroup of a free group is free; any quotient 
group of an infinitely divisible group is infinitely divisible. Any 
abelian group is isomorphic to a quotient group of a free abelian 
group ; any abelian group is isomorphic to a subgroup of an infinitely 
divisible group (that is, can be embedded in an infinitely divisible 
group). If a free abelian group F is a factor group of an abelian 
group, it is a direct factor; if an infinitely divisible group D is a sub­
group of an abelian group, it is a direct factor. 

3 Call the dual (in this sense) of a free (nonabelian) group a fascist group. R. Baer 
has shown me a proof of the elegant theorem: every fascist group consists only of the 
identity element. 
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The last property has an application to the characterization of 
group extensions. Given abelian groups G and A, an (abelian) exten­
sion of G by A is an abelian group E with G as subgroup and A as 
corresponding factor group A = E/G. More exactly, an extension is a 
diagram 

(1.3) G^E^A 

where X is an isomorphism of G into £ , p a homomorphism of E onto 
A, and the kernel of p is the image of X. The set of all extensions of 
G by Ay with a suitable equivalence relation and a suitable composi­
tion, constitutes a group Ext (A, G). This group has an alternate ex­
pression ([7] Theorem 10.1) in terms of any representation of A as 
a quotient group of a free group. 

THEOREM 1.2. If A is isomorphic to F/Rt where F is a free abelian 
group with subgroup R, then 

(1.4) Ext (A, G) S Hom (R, G)/Hom (F, G) | R, 

where Hom (i?, G) denotes the group of homomorphisms of the group R 
into G, and Horn (F, G) | i? tóö subgroup of those homomorphisms of R 
into G which can be extended to homomorphisms of F into G. 

A similar and relatively simple argument will prove a dual theorem. 
The dual of an extension of G by A is described by a diagram like 
(1.3) with the arrows reversed and the terms "isomorphism into" and 
"homomorphism onto" interchanged; thus the dual of an extension of 
G by A is an extension of A by G. The dual theorem now reads 

THEOREM 1.2'. If A is isomorphic to a subgroup S of an infinitely 
divisible group D, then 

(1.40 Ext (G, A) Ç* Horn (G, D/S)/Homs (G, D), 

where Horn (G, D/S) denotes the group of homomorphisms of G into the 
factor group D/S, and Horns (G, D) the subgroup of those homo­
morphisms of G into D/S which can be obtained by a homomorphism of G 
into D, followed by the canonical projection of D onto D/S. 

I t should be noted that the subgroups Hom(F, G)\R and 
Horns (G, D) which appear in (1.4) and (1.4') can be described in 
strictly dual fashion. Thus in (1.4) let K: R--+F denote the identity 
injection of R into F. Then a homomorphism y of R into G lies in the 
subgroup Horn (F, G) \ R if and only if there exists a /3, 

p:F->G with @K = 7. 
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Dually, let 71* : D—>D/S be the canonical projection of the infinitely 
divisible group D onto the factor group D/S. Then a homomorphism 
7 of G into D/S lies in the subgroup Horns (G, D) if and only if 
there exists a /3 

p:G-+D with vp = y. 

2. A table of dualities. The duality under discussion is a process 
which assigns a dual statement to each of certain statements about 
groups and homomorphisms. Each homomorphism a is understood 
to be a homomorphism of a specified group G into a specified group 
H\ we write a: G—>H and call G the domain and H the range of a. 
Note that the range may be larger than the image a(G). 

If 5 is a subgroup of G (notation 5 C G ) , then the injection K 
= [GZ)5] of S into G is that homomorphism of 5 into G with K(S) —S 
for every s £ S. If JV is a normal subgroup of G, then Q = G/N is a 
quotient group of G (notation Q^G) , and the projection 7r= [Q^G] 
of G onto <2 is that homomorphism of G onto () for which 7r(g) is the 
coset gN for every g (EG. The systematic use of these injection and 
projection homomorphisms is at the heart of our formulation of the 
duality phenomena. 

We consider any statement S about groups which does not make 
reference to the elements of the groups involved, but only to homo­
morphisms with these groups as domains and ranges, to the products 
of homomorphisms, to subgroups and quotient groups, injection and 
projection. The statement dual to S is then the statement obtained 
by carrying out the following interchanges in S . 

a:G-±H a: H-+G 
domain a = G range a = G 
a is an isomorphism into a is a homomorphism onto 
product Pa product a/3 
S is a subgroup of G Q is a quotient group of G 
the injection [GDS] : 5->G the projection [Q^G] : G-^Ç. 

A difficulty appears at once. The relation of inclusion for subgroups 
is transitive, in that T(ZS and SCG imply TQG. However, if R^Q 
and Q ̂  G, then R cannot be a quotient group of G, consisting of cosets 
of G, because R consists of cosets of cosets of G. The second iso­
morphism theorem shows only that R is isomorphic to a quotient 
group of G. By suitably redefining the notion of a quotient group, this 
difficulty will be removed (cf. §12 below). 

To apply this duality to nonabelian groups we consider the dual to 
the statement US is a normal subgroup of G." The usual definition of 
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normality refers to elements of the groups, hence cannot be dualized 
directly. Let us say that a homomorphism /5: G-^H is a zero homo-
morphism (briefly, ]8 = 0) if yS maps all of G into the identity element 
of H. The statement "|3 = 0" turns out to be self dual (§15). If 5 and 
S' are subgroups of G, [CDS] and [GZ)S;] the corresponding injec­
tions into G, we say that 5 dominates S' in G if and only if, for every 
homomorphism a: G—>£T, 

a[G D S] = 0 implies a[G D S'] = 0. 

I t then appears that a subgroup S is normal in G if and only if 5 
contains every subgroup 5 ' of G which it dominates. This character­
ization can be dualized to define a conormal quotient group of G ; it 
then appears that every quotient group is conormal in this sense ! 

This illustrates the fact that the dual of a true statement about 
groups need not be true. Another more familiar example is the fol­
lowing. Every subgroup S of a quotient group G/N of G is a quotient 
group of a subgroup of G; indeed S = M/N, for a suitable subgroup 
M, with G'DM'DN. However, a quotient group S/N of a subgroup 
5 of G need not be a subgroup of a quotient group of G, because N, 
though normal in the subgroup 5, need not be normal in G. Another 
example is the Kurosch-Birkhoff-Jordan-Hölder theorem for trans-
finite ascending sequences [5, p. 89]; the dual is not true, even for 
abelian groups. 

I t is nevertheless true that the duals of a large class of true state­
ments about groups are true, and it is our objective to delimit this 
class of statements. 

3. Free products and direct products. L e t A X B be the direct (or 
cartesian) product of the groups A and 5 , defined as the group of 
pairs (a, b) for aÇiA, b(E.B. Let a and ]8 denote the natural homo­
morphisms a(a, &)=a, /3(a, b)=b of the direct product onto its re­
spective factors. The direct product may then be described concep­
tually in terms of a and /3 and the diagram 

(3.1) 

as follows. Given any group C, and any homomorphisms a' and /?' of 
C into A and B respectively, there exists one and only one homo­
morphism 7 : C—>A XB with 

(3.2) ay = a', py = 0'. 
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Specifically, y(c) = (a'c, P'c) is such a homomorphism, and is clearly 
the only such. This property of the diagram (3.1) determines the 
direct product AXB and its mappings a and ]8 up to an isomorphism; 
hence it may serve as a definition of the direct product. 

Let A * B be the free product of the groups A and B, defined in the 
usual fashion (cf. [18, p. 45 ; 1 ; 21 ]) as the set of all words aibiajb^ • • • 
anbn for a» £-4 , biÇiB with multiplication defined by juxtaposition of 
words, equality by the process of removing any bi (or any ai) equal to 
1, and multiplying the two adjacent a's, together with the inverse 
and iterations of this process. With this free product we associate the 
isomorphism a of the first factor A into A * B} obtained by mapping 
each a in A into the word "a," and the analogous isomorphism 
j3: B—>A * B. The free product may then be described conceptually by 
the diagram 

(3.1') 

as follows. Given any group C, and any homomorphisms a' and j8' of 
A and B, respectively, into C, there exists one and only one homo­
morphism 7 : A * B—>C such that 

(3.20 y a = a', 70 = 0'. 

Specifically, y(aibi • • • anbn) = (a'ai) (jS'&i) • • • (a'an) (fi'bn) is such a 
homomorphism, and is the only one. Again, this description de­
termines the free product, together with its mappings a and j8, up to 
an isomorphism. 

The diagram (3.1) is dual to (3.1'), while the product relations 
(3.2) are dual to (3.2'). The mappings a and j3 of (3.1) are homo­
morphisms onto; in (3.1') they are isomorphisms into. If the intersec­
tion of the kernels of a! and /3' in (3.1) is the unit group, then 7 in 
(3.1) is an isomorphism into. If the union of the images of a' and j3' 
in (3.1') is the group C, then 7 in (3.1') is a homomorphism onto. 
These two statements can be so reformulated as to be strictly dual 
in our sense (the notion of "kernel" must be replaced by a suitable 
notion of "coimage," as described in §16 below.) 

The proof of the existence of the direct product is not dual to the 
proof of the existence of the free product, for both proofs involve 
reference to the elements of the groups concerned. However, the 
proof that the direct product is unique up to an isomorphism can be 
phrased so as to be exactly dual to the proof of the uniqueness of the 
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free product up to an isomorphism. Similarly, the proofs of the asso­
ciative and commutative laws for direct products, formulated in 
terms of diagrams like (3.1), are dual to the proofs of the correspond­
ing laws for the free product, as will be indicated again in §18 below. 

4. Composition series and chief series. A composition series for the 
(finite) group G is a sequence of subgroups 

(4.1) G = MQ D M1 D M2 D • • • D M^i D Mk = (1), 

such that each subgroup Mi is a maximal proper normal subgroup 
of the group ik/V-i, for i~ 1, • • • , k. A chief series for the finite group 
G is a sequence of normal subgroups of G, 

(4.2) G = NmD Nm^i D Nm^ D • • • D Ni D N0 = (1), 

such that each Ni is maximal among the proper subgroups of Ni+i 
normal in G. This description is not a dual of the preceding descrip­
tion, but consider instead the quotient groups Qi = G/Ni. Then the 
chief series becomes a sequence of quotient groups of G, 

(4.10 G = <2o è Qi è Ö2 è • • • è e ^ i è Qm = (10, 

with each Qi a maximal proper quotient group of Qi-i, for i= 1, • • - , 
m. Conversely, any such sequence of quotient groups of G de­
termines uniquely the corresponding chief series (4.2). The descrip­
tion of (4.10 is dual to that of (4.1), because the maximal proper 
quotient groups may be described equivalently as maximal proper 
conormal quotient groups, with our previous definition of conormal-
ity. The last term of the series (4.10 is the unit quotient group (10 
= G/G of G, which can be described as that quotient group of G 
which is a quotient of every quotient group of G. This is dual to a de­
scription of the unit subgroup (1) of G. 

We next dualize the formula G/M. The quotient group Q = G/M, 
for M normal in G, can be characterized in terms of injections and 
projections by the properties 

(i) [G/M^G][GDM]=0; 
(ii) If [R^G]\[GDM] = 0 , then R^G/M. 

Dually, each conormal quotient group Q of G determines a cor­
responding normal subgroup of G, denoted by G + Q and character­
ized by the dual properties 

(i') [Q^G)[GD(G + Q)]=0; 
(ii') If [Q^G][GDS] = 0, thenSC(G + Q), 

which state in effect that G -f- Q is the kernel of the projection of G on 
Q. Hence, in ordinary terms, 
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(4.3) G + (G/M) = M G/(G + Q) = Q, 

for M a normal subgroup, Q a conormal quotient group of G. 
The composition series (4.1) determines a set of quotient groups 

Mi/Mi+i, for i = 0, • • • , k — 1. The chief series in the dual form 
(4.1') determines a set of groups Qi + Qi+i. Since Qi = G/Ni, Q»-+i 
= G/Ni+i, the symbol (?*-*-Ö*+i designates the kernel of the projec­
tion of Qi onto ()t-+i, and this kernel is exactly the group Ni+\/N%. 
Hence the set of quotient groups of the composition series (4.1) 
corresponds dually to the set of quotients Ni+i/Ni of the chief series 
(4.2). The Jordan-Holder theorem asserting the uniqueness of the set 
of these quotient groups for a finite group G thus becomes the dual of 
the Jordan-Holder theorem for the chief series. 

5. Ascending and descending central series. I t has long been recog­
nized that the ascending and the descending central series of a group 
G (cf. [l2; 22, chap. IV]) are dual concepts. We may show that they 
can be described in strictly dual fashion, in our sense, relative to the 
group of inner automorphisms of G. For any element a in G we denote 
by (j> = 4>a the corresponding inner automorphism of G, with <£(g) 
= aga~x for all g £ G , and by 1(G) the group of all these inner auto­
morphisms. If 5 is a subgroup of G, then 4>(S) denotes the image of 
S under <j>. 

The ascending central series GD • • • DZ2Z)ZiDZo for a group G 
consists of Zo, the identity subgroup, Zi, the center of G, and Zn , de­
fined inductively as that normal subgroup of G such that Zn/Zn-i is 
the center of G/Zn_i. In particular, the center Z\ consists of all ele­
ments of G left fixed by every inner automorphism of G. Thus if S 
is a normal subgroup of G such that 

(5.1) <j)(S) = S, and <j> induces the identity automorphism on S, 

for every <££/(G), then SCZi . Since Z\ itself has the property (5.1), 
it may be characterized as the maximal normal subgroup S of G with 
this property. This description suggests the following readily proved 
characterization of the groups Mn = Zn of the ascending central series. 

THEOREM 5.1. If 1(G) is the group of inner automorphisms of G, then 
there exists a unique sequence GZ) • • • I ) i l f nD • • • DikfOitfo of 
normal subgroups of G such that M0 is the identity subgroup and, for 
each n>0, Mn is the maximal subgroup N of G with the properties 

(i) N'DMn-i, N normal in G; 
(ii) For each <f> in 1(G), 4>(N) = iVr, and <j> induces the identity auto­

morphism on N/Mn-i. 
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To formulate the dual of (ii), we must use our duality table to 
interpret the "image" (f>(N) and the "induced" automorphism. Let a 
be any automorphism of G. If 5 is any subgroup of G and [GZ)5] the 
corresponding injection of 5 into G, then the product a [ G 3 5 ] is an 
isomorphism of S onto some subgroup T of G, hence may be written 
uniquely in the form 

(5.2) a[GDS] = [GDT]a3, 

where as is an isomorphism. In this decomposition we may define 
the group T to be the image of S under a, and the isomorphism as' 
S—>T to be the isomorphism induced by a on 5, in agreement with 
the usual meaning of an "induced" isomorphism. Dually, let Q be a 
quotient group of G, and [ÇrgG] the corresponding projection. The 
product [ Q ^ G ] a is then a homomorphism of G onto Q} hence may be 
written uniquely in the form 

(5.20 [Q^G]a = aQ[R^Gl 

where R is a quotient group of G, and aQ an isomorphism of R onto 
Q. We define R to be the coimage of Q under a (in symbols, R=cj>,(Q))1 

and «Q: R—>Q to be the isomorphism induced by a on the coimage. In 
these terms, condition (ii) of Theorem 5.1 becomes the requirement 
that for each (j> there exists an isomorphism 0^ : N—>N such that 

(5.3) <}>[G D N] = [G D N]4>N, [N/ Mn^ ^ N]<j>N = [N/Mn^ S N]. 

The dual of Theorem 5.1 may now be formulated as follows. 

THEOREM 5.1'. If 1(G) is the group of inner automorphisms of G, 
then there exists a unique sequence of (conormal) quotient groups 
G ̂  • • • ^ Qn à • • • è (?i à Qo of G such that Qo = G/G is the identity 
quotient group and, for each n>0, Qn is the maximal quotient group R 
of G with the properties : 

(i') R^Qn-i, R conormal in G; 
(ii') For each </>£i"(G), <j>'(R)—R, and cj> induces the identity auto­

morphism on R + Qn-i. 

Here again the condition (ii') means that for each cj> there exists an 
isomorphism <J>R : R—+R such that 

( 5 3 / ) [ X ^ 6 ] * = fe[^G], 

4>*[R D(R + G - I ) ] = [R D CR -s- Ö^i ) ] . 

By setting Qn = G/Ln, this theorem may be translated into a theorem 
about a descending chain of normal subgroups Ln of G. One readily 
shows that the theorem is valid with Ln the groups of the usual 
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descending central series; that is, with Li = [G, G], the subgroup of 
G generated by all commutators in G, and in general with Ln 

= [G, Ln-i\y the subgroup generated by all commutators of elements 
in G with elements in Lw_i. 

We have thus shown that in this formulation the descending cen­
tral series of G is indeed the dual of the ascending central series. We 
remark in passing that the theorems above are still valid if the group 
1(G) of inner automorphisms of G is replaced by any group B{G) of 
automorphisms of G. 

It may be noted that our formulation of duality in terms of homo-
morphisms does not suffice to subsume all known "duality" phe­
nomena. In particular, it does not appear to explain the duality be­
tween "verbal" and "marginal" subgroups [13], which is, however, an 
extension of the above duality between ascending and descending 
central series. 

6. Functional and axiomatic duality. For a topological space the 
duality between homology and cohomology groups with locally com­
pact abelian coefficient groups can be formulated in terms of character 
groups. Another formulation is suggested by the axiomatic homology 
theory of Eilenberg and Steenrod [9; 10]. In this formulation, the 
axioms for a homology theory refer not to elements of the (relative) 
homology groups, but only to certain homomorphisms; the dual 
statements are exactly the axioms for a cohomology theory. For 
example, any continuous mapping £: X—±Y of one space into a 
second induces a mapping in the same direction on the homology 
groups, and in the reverse direction on the cohomology groups of 
these spaces. One of our chief objectives is that of providing a back­
ground in which the proofs for axiomatic homology theory become 
exactly dual to those for cohomology theory.4 

Duality phenomena also appear in the case of vector spaces. Each 
finite-dimensional vector space V over a field F has a dual or con­
jugate space V*, consisting of all linear functionals on F to F, and to 
each linear transformation T: V—>W there is a conjugate trans­
formation T*: W*—>V*. The passage from a set of transformations 
to their conjugates inverts the direction of all transformations, inter­
changes the order of factors in a product of transformations, and re­
places a transformation onto by a one-to-one transformation into, 
hence provides an explicit realization of the type of duality we have 
discussed. Much the same remarks apply to locally compact abelian 
groups, under the formation of character groups. 

4 This consideration was suggested to the author by his study of the manuscript 
of [10]. 
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In these instances there is a process assigning to each object a dual 
object and to each transformation a dual transformation, so that a 
"functional" duality is present. Similarly, the duality of (plane) pro­
jective geometry may be formulated in two ways: functional, by 
assigning to each figure its polar reciprocal with respect to a fixed 
conic; axiomatic, by observing that the axioms for plane projective 
geometry are invariant under the interchange of "point" with "line." 

Even for discrete abelian groups or for discrete (infinite-dimen­
sional) vector spaces, a functional duality does not exist. We aim to 
provide an axiomatic duality covering such cases. 

I I . BlCATEGORIES 

7. Categories. The notion of an abstract group arises by con­
sideration of the formal properties of one-to-one transformations of 
a set onto itself. Similarly, the notion of a category [8] is obtained 
from the formal properties of the class of all transformations £: X—»F 
of any one set into another, or of continuous transformations of one 
topological space into another, or of homomorphisms of one group 
into another, and so on. Each transformation £ is associated with a 
definite domain X and a definite range F; the product or composite 
rj£ of two such transformations £: X—>Yand rj: Y'—*>Z is to be defined 
only when F = Y' (range % = domain rj). With these conventions, one 
has the following formal properties.5 

DEFINITION. A category Q is a class of elements a, /?, y, • • • , called 
"mappings" for certain pairs of which a product afiÇ^Q 'ls defined, 
subject to the axioms C-0 to C-4. 

C-0. (Equality axiom). If a —a', j8 = j8' ,and the product a(3 is de­
fined, so is the product a'fi', and afi = a'fif. 

C-l. If the products a(3 and (aft)y are defined, so is (3y. 
C-l' . If the products fiy and a((3y) are defined, so is a/?. 
C-2. (Associative law). If the products cx/3 and j3y are defined, so 

are the products (ce/3)Y and a(/3y), and these products are equal. 
A mapping / of Q is called an identity of Q if (i) II is defined ; (ii) 

la —a whenever la is defined; (iii) j8J = /3 whenever f3I is defined. 
C-3. (Existence of domain I and range ƒ'). For each aÇ:Q there 

are identities I and I' in Q such that ai and I'a are defined. 
C-4. For given identities I and I ' the class of all mappings a of Q 

such that both ai and Va are defined is a set (cf. §8 below). 
The axioms C-l, C-l ' , and C-2 together state that the associative 

law {a^)y — a(fiy) holds, with all terms defined, whenever both 
products on the left, or both products on the right, or both products 

5 These axioms (with C-4 omitted) are equivalent to those given in [s]. 
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afi and (3y are known to be defined. 
I t is convenient to introduce a class of "objects" A, B, • • • in one-

to-one correspondence A<r->IA with the identity mappings /o f Q. Since 
the identities / , V described in C-3 are unique, the object A =D(a) 
such that OLIA is defined is called the domain of a, and the object B 
such that IBCL is defined is the range B=R(a) ; we then write a: A—>B. 
These objects have the following properties. 

(i) a = /3 implies D(a) =Z?(/3)f R(a) =#( |3) ; 
(ii) A—B\{ and only if IA~IB] 
(iii) The product afi is defined exactly when D(a) =i?(j8), and then 

D(c#)=Dtf), R{a&)=R{a)\ 
(iv) D(IA)=R(IA)=A; 

(v ) aID(<X)=zOL = IR(a)a; 

(vi) If D(a) = R(fi) and D{fi) =R(y), then a(fiy) = (048)7; 
(vii) For given objects A and 5 , the class of all a with R(a) =B, 

D(a)=A is a set. 
Conversely, these seven properties could serve as a definition of a 

"category with objects" ; they imply the original axioms (C-0)-(C-4) 
for the mappings of such a category. 

A mapping 6 is an equivalence in Q if there are mappings <j> and \[/ 
in Q such that 6cj> and î 0 are defined and are identities. Then <j>=\p 
is the unique inverse d~l of 0. I t is itself an equivalence, and 

Rie-1) = D(o), Die-1) = R($), (0-1)-1 = 0. 

8. Foundations. We shall use the category Q of all groups, in 
which the objects are all groups, and the mappings are all homo­
morphisms of one group into another—and similarly the category of 
all topological spaces and continuous mappings, and so on. The ap­
parently illegitimate totalities of "all" groups and "all" homo­
morphisms can be justified by using the standard von Neumann-
Bernays-Gödel axiomatics for set theory [2; 11 ] in which both the 
notions of "class" and "set" appear, the sets being more restricted 
than the classes. We then understand a group to be a set G, with 
multiplication defined by a suitable set of triples; a homomorphism is 
likewise described by sets. With the cited axioms for set theory, one 
can then correctly speak of the class of all groups and of the class of 
all homomorphisms of one group into another. For this reason, we 
have described a category as a class and have inserted axiom C-4. 

9. Bicategories. The primitive concepts of a category are not suf­
ficient to formulate all the duality phenomena, and in particular do 
not provide for "subgroups versus quotient groups," or "homo­
morphisms onto versus isomorphisms into." To extend our formula-
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tion, we axiomatize the terms "injection homomorphism of a sub­
group into a larger group" and "projection homomorphism of a group 
onto a quotient group." We can then define homomorphisms onto and 
isomorphisms into as "supermaps" and "submaps," respectively. 

DEFINITION. A bicategory* Q is a category with two given subclasses 
of mappings, the classes of "injections" (/c) and "projections" (ir) 
subject to the axioms BC-0 to BC-6 below.7 

BC-0. A mapping equal to an injection (projection) is itself an in­
jection (projection). 

BC-1. Every identity of Q is both an injection and a projection. 
BC-2. If the product of two injections (projections) is defined, it is 

an injection (projection). 
BC-3. (Canonical decomposition). Every mapping a of the bi-

category can be represented uniquely as a product a = K07r, in which 
K is an injection, d an equivalence, and w a projection. 

Any mapping of the form X = K0 (that is, any mapping with ir equal 
to an identity in the canonical decomposition) is called a subtnap; 
any mapping of the form p=07T is called a super map. 

BC-4. If the product of two submaps (supermaps) is defined, it is a 
submap (supermap). 

Any product KITTI • • • KnTtn of injections K* and projections TT< is 
called an idemmap. 

BC-5. If two idemmaps have the same range and the same domain, 
they are equal. 

BC-6. For each object A, the class of all injections with range A is 
a set, and the class of all projections with domain A is a set. 

The inclusion relations between the various classes of mappings 
can be represented by the following Hasse diagram. 

Mappings 

injections projections 

identities 
6 The term "bicategory" was suggested by Professor Grace Rose. 
7 In the preliminary announcement [16], axiom BC-6 did not appear, and axiom 

BC-5 was present only in weaker form. 
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The axioms show that the intersection of any two such classes is 
exactly the intersection which may be read off this diagram. Each 
class of mappings is closed under multiplication (whenever the prod­
uct is defined). I t is convenient to reserve the letters A, /x, v for sub-
maps, p, o*, r for supermaps. 

10. The duality principle. The concept of the "dual" of a statement 
about homomorphisms may now be defined precisely. In a category, 
the only primitive statements are statements of the forms 

(10.1) « = /3, a/3 = T ; 

We interpret the latter to mean "the product a/3 is defined and is 
equal to 7 ." All other statements can be expressed in terms of these 
primitive statements; in particular, we understand the statement 
"a/3 is defined" to be interpreted as "there exists a 7 such that a/3 = 7." 
A first order statement 5 in a finite number of letters (which designate 
mappings of the category in question) is any statement formed from 
a number of primitive statements of the types (10.1), combined by 
the standard logical connectives (including quantifiers "for all a" 
and " 3 a " ) . The dual of S is the statement obtained from S by the 
following typographical process: replace each primitive statement 
a/3 = 7 by the statement /3a = 7, leaving the other primitive state­
ments, all the letters, and all the logical connectives unchanged. The 
dual is thus obtained by "inverting all products." A similar process 
will apply to statements which are not of the first order, in that they 
involve variables for sets of mappings, sets of sets of mappings, and 
so on. 

The dual of any axiom for a category is also an axiom; in particu­
lar, C- l ' is (except for change in notation) the dual of C-l, and the 
other axioms are self-dual. A simple metamathematical argument 
thus proves the 

DUALITY PRINCIPLE. If any statement about a category is de-
ducible from the axioms for a category, the dual statement is likewise 
deducible. 

In a bicategory, the only added primitive statements are 

(10.2) a is an injection, a is a projection. 

The dual of a statement about mappings in a bicategory is now ob­
tained as before, with the added interchange of the terms "injection" 
and "projection." An inspection of the axioms shows that the duality 
principle holds for bicategories also. 

A statement of group theory may often be formulated in (bi-) 
categorical form ; that is, as a statement about homomorphisms, in-
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jections, projections, identities, and their products. When so formu­
lated, it has a definite dual, but note that there may be several such 
formulations which lead to essentially different duals. For example, 
UQ is a quotient group of G" (that is, there is a projection with domain 
G and range Q) is equivalent to UQ is a conormal quotient group of 
G." The duals—"ikf is a subgroup of Gn and " M is a normal subgroup 
of G"—are not equivalent. 

11. Partial order in a bicategory. The axioms (especially axiom 
BC-5) suffice to introduce a relation of partial order (under "inclu­
sion") in the objects of a bicategory. We define a mapping ]8 to be 
left cancellable in a category if j8ai=j8a2 always implies cei = ce2, and 
left invertible if ]8 has a left inverse 7, with 7/? = I D ^ ) . One may readily 
prove, in succession, the following results. 

LEMMA 11.1. Two injections *i and K2 such that K1K2 is an identity are 
themselves identities. 

LEMMA 11.2. Every right f actor of a submapping is a submapping. 

LEMMA 11.3. If afi is an identity, a is a supermap and ]8 a submap. 

LEMMA 11.4. Every left invertible mapping is a submap, and every 
submap is left cancellable. 

THEOREM 11.5. The class of objects in a bicategory is partially ordered 
by either of the relations 

(11.1) SC.B if and only if there is an injection K: S—+B; 
(11.1') Q^A if and only if there is a projection T: A—>Q. 

If SQB, we call 5 a subobject of B, while if QSA, Q is a quotient-
object of A, the terms corresponding to those in group theory. By 
axiom BC-5 the mappings K and w which appear in the dual defini­
tions (11.1) and (11.1') are unique; it is more suggestive to denote 
them as 

(11.2) K = [BDS]:S-+B; ir = [Q£A]:A-+Q. 

Thus [ i O S ] is a mapping, defined precisely when SQB and is then 
an injection; every injection has this form. The notation is so chosen 
that 

(11.3) [BDS][SDT]= [BDTl [RgQ][Q£A]=[R£A], 

by BC-5, whenever the terms on the left are defined. 
In examining prospective examples of bicategories, it is easier to 

formulate the axioms directly in terms of these constructions on the 
objects. 
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DEFINITION. A bicategory with objects is a category with objects, in 
the sense of §7, in which there are mappings [ i 0 5 ] and [ Ç ^ 4 ] 
assigned to certain pairs of objects B, S or Q, A, subject to condi­
tions (i)-(vi) below and their duals. Here "5C-B" means "the map­
ping [ iO-S] is defined," and dually, while an equation involving the 
mappings [ i O S ] , • • • is understood to include the assertion that 
[ iO-S] , • • • is defined. An idemmap is any product 0:10:2 • • • ami 

where each ai has one of the forms [BDS] or [Q£A]. The axioms 
are 

(i) (Equality). B=B\ 5 = 5 ' , and SCB imply [BDS] = [B'DS']. 
(ii) For all o b j e c t s ^ , [ADA]=IA=[A£A]. 
(iii) Every mapping a has a unique representation 

(11.4) a = [B D S]e[Q ^ A], 6 an equivalence. 

(iv) If 0: A-+B is an equivalence and TC.A, there is an object S 
and an equivalence 0' such that 

(11.5) B[A D T] = [BDS]0'. 

(v) If two idemmaps have the same range and the same domain, 
they are equal. 

(vi) For each object A, the class of all Q^A is a set. 
Note that axiom (v) includes the statement (11.3). 
Every bicategory determines a bicategory with objects; conversely, 

the mappings of a bicategory with objects form a bicategory, if the 
injections are the mappings [ 2 0 5 ] and the projection the mappings 
[Q*A]. 

In the canonical decomposition (11.4) call S the image of af Q 
the coimage of o:; in symbols, 

(11.6) Im ( o ) = S C R(a), Coim (a) = Q ^ D(a). 

By (vi), each object A determines the set S (A) of all subobjects T, 
with TQA, and the set £l(A) of all quotients R^A. Given a: A~>B, 
each TC.A has an "image" a8T(ZB, and dually, as defined by 

(11.7) asT = Im (a[il D T]) aqQ = Coim ([Q ^ B]a). 

Then as is an (inclusion) order preserving transformation of the set 
S (A) into the set S (J3), and, if aft is defined, (af3)s = asl3s. One readily 
proves the following theorem. 

THEOREM 11.6. If a is an identity map, as is the identity. If 0 is an 
equivalence 0: A—*B9 08 is a one-to-one transformation of S (A) onto 
S (-B), with inverse (ö_1)s. If K is an injection K: S—>Bt KS is the identity 
transformation of S(S) into S(B). If X: A—>B is a submapping, X« 
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is a one-to-one transformation of S {A) onto the subset S (\A) of S (B). 

A corresponding result for projections or supermappings does not 
hold in general. Note that the dual of Theorem 11.6 will assert, for 
example, that if p: A-+B is a supermapping, then pq is a one-to-one 
transformation §l(B) onto a subset £l(pqB) of £l(A)—the logical 
phrases (one-to-one onto, and so on) are not changed by dualization. 

12. Equality and examples of bicategories. We have already ob­
served in §2 that groups and homomorphisms, with the natural inter­
pretation of an injection as the identity mapping applied to a sub­
group and of a projection as a canonical homomorphism of G on G/N, 
do not satisfy the axioms for a bicategory, because BC-2', on products 
of projections, fails. We avoid this difficulty by abandoning the cur­
rent coset fashion for the classical congruence idea, and regarding 
G/N as a group whose elements are simply the elements of G, with a 
new equality:—gi=g2 (mod N) if and only if gig^EiV. A quotient 
group of a quotient group is then a quotient group. 

More explicitly, we regard a group G as the mathematical system 
[MG, = G, XG] consisting of a set MG, a relation = G, reflexive, 
symmetric, and transitive for the elements of MG, and a binary opera­
tion X G defined for all pairs of elements of M G- T O all the usual 
axioms and definitions we then append the appropriate equality 
axioms; for the group axioms they are 

a =Gb implies a G M G, b G M G., 

a =Gb and g =G h imply a XG g = G 6 X G h; 

for a homomorphism a : G—*H they are 

a =Gb implies aa = H otb1 

a(a XGb) =H (aa) XH (ab), for a, b G MG\ 

for a subgroup SC.G they are 

a =sb if and only if a = # ô, for ail a G Ms, 

a Xsb = 0 0 X G Ô , for ail a, b G Ms-

Finally, a quotient group Q of G is a group such that 

h G MQ implies h G M G, 

a =G.b implies a = Q Ô, for a> b G M G, 

a XGb =Q a XQ b whenever a, b G MQ. 

It follows that M G and MQ have the same elements. 
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With similar definitions for the equality of groups and homo-
morphisms, and with an injection (projection) defined as a homo-
morphism a of a subgroup S into G (of G upon a quotient group) de­
termined by the identity function j , it readily follows that the class 
of all groups and homomorphisms constitutes a bicategory with ob­
jects. Similarly, we have the bicategory of all abelian groups, of all 
finite groups, of all rings, and so on. 

The bicategory S of nonvoid sets will thus be interpreted as the bi­
category of sets where each set S carries with it an equivalence rela­
tion = s, and with the appropriate transformations as mappings. 
This bicategory has several special properties. The axiom of choice 
is equivalent to the theorem that for every mapping £ of S there is a 
mapping £* of S with ££*!; = £. The left cancellable mappings are iden­
tical with the left invertible mappings and hence with the submap-
pings (Lemma 11.4). The dual statement is also true. However, the 
dual of a true statement about the bicategory of sets need not always 
be true. For example, there exists a subclass S * of mappings which 
contains exactly one mapping with any given domain and any given 
range, and such that any right multiple of a mapping of S * is also in 
S *. The dual assertion is false. 

The bicategory of topological spaces has as objects all topological 
spaces and as mappings all continuous transformations of one such 
space into another. The definitions are again the standard ones, 
plus equality axioms; in particular Q is a quotient space of X if 
the set MQ is a quotient set of Mx, and if the identity transformation 
of Mx onto MQ induces a continuous transformation of X onto Q. 
Thus, if X is decomposed into disjoint subsets, the usual decomposi­
tion space Q may be interpreted as a quotient space of X—but these 
are not the only quotient spaces of X, since the same set MQ and the 
same equality may form a quotient space with fewer open sets. The 
axioms for a bicategory may be verified, the essential feature being 
the unique factorization axiom BC-3, for a continuous transforma­
tion £: X—»F. If we define the image %(X) C Y with the usual relative 
topology, the set quotient of the transformation £ is then a set Q^X 
in one-to-one correspondence with the image space %(X) ; using this 
correspondence we impose a topology on Q which makes Q a quotient 
space of X. This gives the factorization of £, the uniqueness following 
readily. The essential feature of this argument is the fact that every 
continuous image £(X) of a topological space in another such is it­
self a topological space. We may thus speak of the bicategories of all 
To, 7i, T2, or all compact Hausdorff spaces. 

13. Universal algebra. These examples indicate tha t most types of 
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algebraic, topological, or other mathematical systems, together with 
the appropriate type of transformations, yield bicategories. The bi-
category language appears to be the appropriate vehicle for many of 
the theorems of universal algebra (cf. [3; 4; 6; 15; 19; 20])—often 
giving simpler formulations, because the axiomatic formulation 
avoids the inevitably cumbersome explicit description of the general 
form of any algebraic or mathematical system. This is especially the 
case when universal algebra is extended to include those algebraic 
systems, which occur so frequently, in which several groups, homo-
morphisms, functions, and so forth, together constitute a single alge­
braic system. Using the notions of covariance and contravariance 
[8] one can in fact give a general definition of mathematical systems 
and prove, under general hypotheses, that the class of all systems of 
a given type is the class of objects of a bicategory. 

The crucial point of this development is the definition of the 
"homomorphisms" appropriate to the type of system at hand. For 
example, a topological space may be regarded as a set X together with 
a suitable, selected subset Vx (open sets) of 2X. A homomorphism 
(continuous transformation) £: X—>Y must then carry VY into Vx; 
in other words 2X must be regarded as a contravariant functor of X 
(and not, as in some other cases, as a covariant functor). The general 
definition can then be extended to include algebraic systems defined 
by functors contravariant in one argument and covariant in another 
—a good illustrative example being the algebraic homotopy types 
considered in [17]. 

Leaving this development aside, we shall next show merely that 
the axioms for a bicategory can be extended so as to include also all 
the phenomena of universal algebra treated by lattice-theoretic means 
(the new axioms being valid in all standard examples). 

14. Lattice ordered categories. A lattice ordered category (LC) is 
a bicategory Q satisfying two8 additional axioms (and their duals). 

LC-1. For each object A, every non void subset of S (A) has a 
least upper bound (l.u.b.) in the partially ordered set S (A). 

Here S (A) denotes the set of all subobjects 5, T, • • • of A with the 
partial order SC.T. The l.u.b. of a collection {Si} of subobjects will 
be denoted by X^S1*» that of two subobjects by SIUAS2. 

LC-2. If a: A—+B and {Si} is a nonvoid subset of S (A), 

(14.1) ^ ( Z ^ C E e x A . 
\ A / B 

8 It might be desirable to add an axiom LC-3 (and its dual) requiring that 
«i, o:2: A-*B, A » Yl^-Si, and «i|Xl)S*] — a2[AZ)Si] for all i imply that «i =Û!2. 
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Since a8 preserves order, we deduce that equality actually holds 
in (14.1). A non void set of objects Si with upper and lower bounds 
CCSiCA has, by the usual proof, a g.l.b. U S ; which is independent 
of the choice of C and A. If a: A—>B, then a s ( H S t ) C IL**^ , with 
equality when ce is a submapping (the latter by Theorem 11.6). The 
set of all 5 with CQSQA is a complete lattice [5]. The l.u.b. J^ASJ 

may depend on the choice of the "universe" A, but 

(14.2) £ Si = £ Si, USiCACB, all i. 
A B 

If we use only LC-1, the inverse image of any subobject T(ZB under 
a mapping a: A—+B is defined as 

(14.3) a*T = 2 ) S, over all S C A with asS C T. 
A 

In this notation LC-2 is equivalent to the requirement that 

(14.4) owx*r C 2\ for all a: A -> B, T C B. 

Also, S = a*T is characterized as a subobject of 4̂ by the properties 
(i) asSCT; (ii) asS'CT for S ' 0 4 implies S ' C S . Furthermore, a* 
is an order preserving transformation of S (£) into S (^4), with (a/3)s* 
= /3s*as* whenever ce/3 is defined. One has also the following theorem. 

THEOREM 14.1. If a: A—+B is an identity, so is a8*; if a is an equiva­
lence, ces* is a one-to-one transformation of S (B) onto S (^4), with a8 as 
inverse, while if a is a submapping, a8* maps S(B) onto § (A). If 
K— [AZ)S] is an injection, and TC.A, then K*T=Tr\S. 

The dual statements hold; in particular any two quotients Qi^A 
and Q2^A have an l.u.b. Q1VQ2 and a g.l.b. Ö1AQ2, the latter when­
ever they have some lower bound. For a: A—>B the inverse coimage 
a* yields a transformation of Sl(A) into £l(B). 

The notion of a lattice ordered category is a simultaneous gen­
eralization of the notions of group and lattice; specifically, every 
group is a lattice ordered category, in which every mapping is an 
equivalence and there is only one identity, and every lattice is a 
lattice ordered category in which every mapping is an injection (or 
dually). 

15. Zeros and zero mappings. A category Q has a zero if it satisfies 
the following axiom. 

Z. There is an object Z such that for every object A of Q there 
exists exactly one mapping f: A—^Z and exactly one mapping 
rj: Z—+A. We call Z a zero object. 
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In the category of groups (abelian groups, rings) any group with 
only the identity element (ring with only the zero) is a zero in this 
sense. The category of topological space does not satisfy axiom Z; 
however that of topological spaces with a distinguished base point 
(as used in homotopy theory) does. The investigations [15] of Jóns-
son and Tarski have already indicated that the presence (or absence) 
of a zero is of critical importance in many investigations of universal 
algebra.9 

Given axiom Z, it follows at once that any two zero objects are 
equivalent. A mapping a is said to be a zero mapping if it can be 
factored as a—y]^y where R(Ç) = D(rj) = Z. This definition is inde­
pendent of the choice of the zero Z. Given any two objects A and B 
in the category, there is exactly one zero mapping a: A—>B; we de­
note this mapping as OBA, SO that OCBOBA = 0CA. In the category of all 
groups OBA is the homomorphism mapping all elements of A into the 
identity element of B. If a = 0 (that is, if a: is a zero mapping), then 
aft = 0 and ya — 0 whenever these products are defined. 

Under the axioms BCZ (bicategory with a zero) we define, for each 
object A, 

(15.1) 1A = Im (0AZ), 1A = Coim (0ZA). 

For groups, 1A is the identity subgroup of A, and 1A the quotient 
group A/A. In general (BCZ) 1ACA; for SCA, IACSCA; and 1A 

is a zero object. The mapping OZA is a supermap, while OAZ is a sub-
map, and any zero mapping QBA has 

(15.2) 0BA = [B D 1B]01B1^[1A ^ A] 

as its canonical decomposition. 

LEMMA 15.1 (BCZ). If X is a submap and p a supermap, then 

(15.3) X/3 = 0 implies /3 = 0; ap = 0 implies a = 0. 

PROOF. Since X is a submap, \ = K6 with K an injection, 0 an equiva­
lence. Let 0/3 have the canonical decomposition dp = Kidiiri. Then 
X/3 = K0/3 has the canonical decomposition (KKI)6IWI. This must agree 
with a canonical decomposition of the form (15.2), whence 0i = O and 
^=0-1(0/3) =0-1/C101TTI = O. 

Finally, under the axioms LCZ (lattice ordered category with Z) 
we observe that each S 04) and each S&A) is a complete lattice (with 
unit 1A resp. 1 )̂ and that 

9 The Jónsson-Tarski zeros give a zero in the sense of this axiom, but the author 
has been unable to prove their direct decomposition theorems in categorical form. 
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(15.4) a: A —> B implies a8lA = 1B, aaljs = U. 

The axioms LCZ hold in the bicategories of all groups, of all rings, of 
all vector spaces over a fixed division ring, and so on. 

16. Normality and kernels. A categorical definition of normal sub-
object can be formulated conveniently under the axioms LCZ. For 
subobjects SC.A and quotient objects Q^A we define an orthogonal­
ity relation 

(16.1) S±AQ i fandonlyif [Q ^ A][A D S] = 0; 

using the axiom LC-1 we then give dual definitions: 

(16.2) A/S = l.u.b. in £ ( 4 ) of all Q ^ A with S ±.AQ, 

(16.3) A + 6 = l.u.b. in S (A) of all S C A with S ±A Q. 

For groups, A/S will then be the usual factor group A/N, where 
NZ)S is the least normal subgroup of A containing S. In general, one 
then proves, using LC-2 in (16.5), that 

(16.4) A/U = Ay A/A = l l , 

(16.5) S±A(A/S), (A+Q)±AQ, 

(16.6) Si C S2 implies A/S% ^ A/Sh 

(16.7) 5 C i - (A/S), A/S = 4 / ( 4 -*- (A/S)); 

in other words S—»4/5, Q—>A-T-Q provides a Galois connection [5, 
p. 56] between S (A) and ^ , (4) . 

Finally, we define 

(16.8) S is normal in A if and only if S = 4 4- ( 4 / 5 ) , 

and dually. Alternative definitions are given by the following 
theorem. 

THEOREM 16.1. A subobject SQA is normal in A if and only if any 
one of the following conditions hold. 

(i) There exists QSA such that S = As-Q; 
(ii) There exists a Q conormal in A such that S = 4 -r-Q; 
(iii) If, for all Q, S±AQ implies S'LAQ, then S'CS; 
(iv) If, for all a: A-±B, a [ 4 D 5 ] = 0 implies a [ 4 D S ' ] = 0 , then 

S'CS; 
(v) There exists a QSA such that S±.AQ and S'QS whenever S'-LAQ. 

The proof of (iv) makes essential use of Lemma 15.1. Also, it may 
readily be proved that 1A and A are normal in 4 , that NCZTQA 
with N normal in 4 implies N normal in T, and that the intersection 
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wNi of objects normal in A is normal in A. (Apparently the similar 
assertion for union, though true for groups, is not a consequence of 
the axiom LCZ.) 

For any mapping a: A—+B the kernel K(a) may be defined as 

(16.9) K(a) = A -f- (Coim a) = a8*lB. 

Then a subobject S is normal in A if and only if it is the kernel of 
some a; when so, it is in fact the kernel of [A/S^A], Furthermore 
K(a/3)Z}K(P), and, for a canonical decomposition, K(KBIT) =i£(7r). 

A further development giving the first and second isomorphism 
theorems, and so on, can be made by introducing additional carefully 
chosen dual axioms. This will be done below only in the more sym­
metrical abelian case. I t is also possible to give a definition of normal­
ity in lattice ordered categories without a zero, by using the criterion 
(iv) of Theorem 16.1, with the zero object suitably replaced by ob­
jects acting like spaces or sets with only one element. This definition 
applies in any category, agrees with the above definition when a zero 
is present, and in the category of T\ spaces has the amusing property 
that the normal subobjects of a topological space are exactly the 
closed subsets of that space! (Because of the failure of separation 
axioms in a decomposition space, this is not true in the category of 
r 2 spaces.) However, in the category of all compact Hausdorff spaces 
(with mappings all continuous transformations) every subspace (be­
ing closed) is normal, but there are nonconormal quotient spaces. 
This reverses the group-theoretic phenomenon that every quotient 
group is conormal. 

III. ABELIAN CATEGORIES 

17. The group of integers. Our objective in this chapter is that of 
providing a self-dual set of axioms for abelian groups and their homo-
morphisms sufficient to prove all categorical theorems which refer to 
a finite number of such groups—and hence adequate to explain the 
apparent perfect duality present for such theorems on abelian groups. 
We also obtain a representation theorem for certain abstract cate­
gories, using the following purely categorical characterization of the 
additive group of integers. 

DEFINITION. An object J in a category Q is integral in Q if 
(i) For two distinct mappings ai, a2: G—>H of Q with the same 

domain G and the same range H there exists a mapping f3: J—^G such 
thataij8^ce2j3. 

(ii) If T is another object of Q with the property (i), there exists 
in Q a mapping a : J'—^J with a right inverse in Q. 
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(iii) If ai<X2 = Ij for two mappings cei, a2\ J—>/, then «i and a2 are 
equivalences. 

One then readily proves the following theorems. 

THEOREM 17.1. The additive group of integers is integral (satisfies 
(i), (ii), and (iii)) in the category of all abelian groups. 

THEOREM 17.2. In any category, any two objects with the properties 
(i), (ii), and (iii) are equivalent. 

PROOF. Given / , J' both integral, there exist by (ii) mappings 
a: J'—ïJ and r : J—»/', each with right inverse. Then T<T: J'—*J', and 
<XT: J—+J have right inverses, hence by (iii) are equivalences. There­
fore (ro')~1T(r = Ij', and a has a left inverse; therefore a is an equiva­
lence a: J'-^J, as asserted. 

A somewhat more difficult proof gives the following theorem. 

THEOREM 17.3. The additive group L of rational numbers modulo 1 is 
cointegral (satisfies the duals of (i), (ii), and (iii)) in the category of all 
abelian groups. 

Hence the group L can also be characterized up to isomorphism. 
We note by the way that the space consisting of one point only is 
integral in the category of all topological spaces, but we do not know 
of (and doubt the existence of) a "cointegral" object in this category. 
However, in the category of all vector spaces over a fixed division 
ring D, the vector space D is both integral and cointegral. 

18. Abelian categories. For abelian groups and for vector spaces 
the cartesian product (of a finite number of factors) can be regarded 
simultaneously as a free and a direct product, in the sense of §3 above. 
We thus introduce corresponding axioms on a category. 

DEFINITION. In a category with zero, a (simultaneous) free-and-
direct product of objects A and B is a diagram 

(18.1) A±ïA X B^±B 

consisting of an object A XB and four mappings T1, T2, A1, A2, 

TIXB'.A XB-+A, TAXBIA XB->B, 

AAXB:A->AXB, AAXB:B->AXB, 

with the following three properties (omitting the subscript A XB to 
simplify notation) : 

(i) TW = IA, TW^OAB, TW = 0BA, r2A2 = / 5 ; 
(ii) For any pair of mappings CL\\ C—>A, a2: C—>B, there exists a 
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unique 7 : C—>AXB with T 1 7=ÖJI , r 2 7 = a2; 
(iii) For any pair of mappings ft: A-+D, ft: B—>D, there exists a 

unique 8: AXB->D with ô A ^ f t , SA2 = ft. 
Here property (ii) asserts that we have a direct product and (iii) 

that we have a free product, both in the sense of §3. 
DEFINITION. An abelian category (AC) is a category Q satisfying 

the axiom Z (existence of zero) and the axioms 
AC-1. There exists an integral and a cointegral object in Q. 
AC-2. There exists in Q a free-and-direct product for any two ob­

jects of Q. 

THEOREM 18.1. Any two free-and-direct products of two objects A 
and B have isomorphic diagrams (18.1). 

If A *B is the second product, the isomorphism of the diagrams 
means that there is an equivalence mapping 0: A XB—+A *B with 

(18.3) dAAXB = A!,B, TA.B0 = ?IXB, i = 1, 2. 

The proof is straightforward. This result and a similar theorem for 
triple products will prove the following theorem. 

THEOREM 18.2. The operation of forming free-and-direct products is 
commutative and associative {in the sense of diagram isomorphism). 

This operation also has the zero object Z as identity, as follows: 

THEOREM 18.3. The diagram 

G±;GT±Z 

with identity mappings on the left, zero mappings on the right, represents 
G as the free-and-direct product GXZ. 

Two homomorphisms oil, a2 for groups have a cartesian product 
denned by 

(«i X a2)(a, b) == (ana, a2b). 

This product may be introduced on the basis of our axioms. 

THEOREM 18.4. Given mappings ai: A—^A', a2\ B—+B', there exists 
one and only one mapping aiXa2: A XB—+A' XB' with 

(18.4) YA'XB'(ai X a2) = OUTAXB, ( « I X a2)AAxB = A.A'XB'OU, i = 1, 2. 

The mapping CL\XOL2 is determined by either one of these two equa­
tions. 
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The proof (here and elsewhere) may be visualized most readily by 
drawing the appropriate diagrams. By (ii), there exists a unique 
mapping 7 = aiX<*2 with the first property of (18.4). Then by (i) 

r'*(ai X a2)A
]' = atT'A> = on (for i = j) 

= 0 (for i y* j). 

But on the other hand, by (i), 

TfiMiai = ai (for i = j) 

= 0 (iori^j). 

Hence, by the uniqueness assertion of (ii) for A'XB', the second 
equation of (18.4) holds. 

One shows also that 0X0 = 0 and IAXIB — IAXB. 
For the cartesian square AXA of an abelian group there is a 

diagonal homomorphism 

VA: A -* A X A with VA(a) = (a, a) 

and a codiagonal homomorphism 

AA: A X A-*A with AA(a, b) = a + b. 

Under our axioms, these mappings can be characterized dually as the 
unique mappings such that 

(18.5) VA:A->AXA, TAXAVA = IAl i = 1, 2; 

(18.50 AA:AXA->A, AAAAXA = IA, i = 1, 2. 

The mappings r*, A% 7, and ô appearing in the definition of the free-
and-direct product may then be expressed as 

(18.6) r 1 = AA(IA x OAB), r 2 = AB(OBA x is), 

(18.6') A1 = {IA X 0BA)VA, A2 = (OAB X IB)VB, 

(18.7) 7 = («i X a2)Vc, à = AD(^ X ft). 

THEOREM 18.5. The axiom AC-2 asserting the existence of free-and-
direct products may be replaced by the assumption that there exists to 
each pair of objects an object A XB, to each pair of mappings a\\ A—*Ar> 
a2: B—*B' a mapping aiXa2: A XB—>A'XBf

y and to each object A two 
mappings AA: A XA—>A, VA: A—^A XA such that 

(i) (ûJiXce2) (jSiXft) = («ift) X (c^ft) whenever ai$\ and a2(32 are de­
fined; 

(ii) If a: A—>B, then 

AB{a X 0BA)VA = a = AB(0BA X a)VA] 
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(iii) Every y: C—>A XB has the form 

y = (a X j8)Vc for some a: C-~> A, (3: C-> B; 

(iii7) E^ery S: 4̂ XB—+C has the form 

Ô = Ac(a X P) for some a: A->C, p: B->C. 

PROOF. Given AC-2, (i) is readily derived, while (ii) results from 
the equations 

A*(a X OBA)VA = &B(<X X OBEKIA X OZA)VA 

= {àB{a X OB«)A]XZ} {rJxzOi X 0ZA)VA} 

= {ABA^XBÖ:} {/JF^X^VA} 

To prove (iii) we set a = riXB7> P = T?AXBy and apply the appropriate 
definitions; (iii') is the dual. 

Conversely, given the conditions (i) to (iii')» w e use the definitions 
(18.6), (18.6'), and (18.7) to construct the free-and-direct product 
diagram on A XB and to prove its properties. 

The "existential" character of condition (iii) in this theorem, cor­
responding to the existential character of (ii) in (18.2), can be 
avoided, by using the readily proved identities 

(18.8) (a X a)VA = VBO:, AB(a X a) = aAA, for a: A -» B, 

(18.9) [AA(IA X OAB)] X M ( W X IB)]VAXB = IAXB. 

THEOREM 18.6. Theorem 18.5 remains valid if conditions (iii) and 
(iii') are replaced by (18.8), (18.9), and the dual of (18.9). 

19. Addition of mappings. Two homomorphisms a, ft: A—>B for 
abelian groups A and B have a sum a+fi: A~->B defined by (a+/3)(a) 
= a(a)+]3(a). For groups one readily verifies that this sum can be 
expressed in terms of diagonal mappings, and so on, as 

(19.1) a + p = A B ( a X ^ 4 . 

We adopt the self-dual expression (19.1) as the definition of the 
sum of two coterminal mappings in any abelian category. By suitable 
use of the Uniqueness Theorem 18.1, one shows that the sum is inde­
pendent of the choice of the free-and-direct products BXB and AXA 
entering its definition. For 0~0BA the equation 

(19.2) o + /3 = 0 = /3 + O 

follows from Theorem 18.3. The commutative and associative laws 



512 SAUNDERS MACLANE [November 

(19.3) <* + /3 = 0 + a, (<* + 0) + 7 = <* + (/3 + 7) 

similarly follow from commutative and associative properties of the 
product A XBy using a lengthy but straightforward manipulation of 
diagrams. One may also establish the distributive laws 

(19.4) (a + 0 ) 7 = «7 + 07, y (a + 0) = ya + yfi, 

each valid whenever the left side is defined. A similar but lengthy 
proof shows that the mappings T\ A* entering the definitions (18.2) 
of the product satisfy the equation 

(19.5) AlTl + A 2 P = IAXB. 

This gives an alternative characterization of the direct-and-free prod­
uct as follows. 

THEOREM 19.1. A diagram (18.1) in an abelian category, with map­
pings satisfying (18.1), (18.2), condition (i) below (18.2), and (19.5) 
is isomorphic to the free-and-direct product diagram for A and B. 

In an abelian category which is also a bicategory we have T{Al 

= identity by (i) of (18.2), hence by Lemma 11.4, the mappings T* 
appearing in a free-and-direct product are supermaps, the mappings 
A* are submaps (exactly as in the usual group-theoretic case). Simi­
larly, by (18.5), AA is a supermap, and V^ a submap. 

20. The representation theorem. We understand an abelian semi­
group G to be a set closed under a commutative and associative opera­
tion of addition and containing a zero for this operation (we do not 
assume a cancellation law). The class of all abelian semigroups and 
all homomorphisms of one such into another (with or without the 
precautions of §12 as to equality) is then a category. Our represen­
tation theorem now is 

THEOREM 20.1. Any abelian category Q is isomorphic to a category 
of semigroups. 

PROOF. Let / be the essentially unique integral object of Q. To 
each object A of Q assign the semigroup G A consisting of all mappings 
£: J~>A in Ç, with addition defined as in §19. Then G A is a semigroup 
with 0Aj as zero. To each mapping a: A—>B construct the trans­
formation Ma: GA—>GB defined by Ma£ = a£: J—*B, for each £ in GA. 

By the distributive law (19.4), Ma is a semigroup homomorphism. 
By the first property of an integral object, ai9£a2: A-+B implies 
MoL^Mar By the associative law in a category, Map = MotMp when­
ever a/3 is defined. Hence the correspondence A-=>~GA, a-*~Ma provides 
the desired isomorphic representation of the category Q. 
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This theorem shows that our axioms for an abelian category in­
clude all the "purely formal" properties of homomorphisms for abelian 
groups, except for properties dependent upon the existence of the 
inverse. 

21. Abelian bicategories. By an abelian bicategory (ABC) we 
understand a lattice ordered bicategory (§14) which is also an 
abelian category (§18) and which is subject to the following additional 
axioms10 ABC-1 to ABC-5. 

ABC-1. For each object A there exists a map VA'> A-^A such that 
VA + IA = 0AA. 

I t follows readily that VA is unique, and that VAVA — IA- Further­
more, if a: A-+B, then aVA+a — aiVA + lA) = 0 and VBOL+CX^O, 
hence VB^ — OLVA^ We may thus define the (additive) inverse of a as 
( — a) = a VA = VBOL ; it has the properties 

a + (-a) = 0, (-a)P = - (afi) = a(-j8) . 

Moreover, it may be shown, using (18.8), that the kernel of AA is the 
image of (IAX VA)VA' A—*A XA, as in the case of groups. 

ABC-2. If Ki, K2 are injections, so is /CiX^2, and dually. 
This gives the canonical decomposition of any aiXa2; it is not used 

further below. 
ABC-3. Every subobject is normal (in the sense of §16) and dually. 
ABC-4. If ADSDT, then S/TCA/T, and dually. 
ABC-5. If il D r , A/TDM, then M = S/T for some S with ADS 

D2"\ and dually. 
ABC-3 and the dual of ABC-5 fail in the category of all groups10 

but hold for abelian groups. Using them, one can prove that any pro­
jection TT: A—>Q with kernel K(ir) = i £ has Q = A/K, and hence that 
the canonical decomposition of any mapping a: A—>B has the cus­
tomary form 

(21.1) « = [BDJma]0[A/K(a) £A]. 

Furthermore, if TC.B and SC.A,* 

(21.2) aq(B/T) = A/a*T, a*(A/S) = B/asS 

and dually. If ADSDT with A*S, then A/T^S/T. If K= [ADS] 
is an injection, the induced transformations KS, and so forth, are given 

10 Axiom ABC-3 and its dual are valid in the category of all groups under the 
hypothesis that TT=[A/T^A] is a "conormal" mapping—that is, that irq carries 
conormal quotients of A/T into conormal quotients of A, By this and analogous de­
vices the proofs of the first and second isomorphism theorems for all groups can be 
based on "categorical" axioms. 
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for any TQS and any UC.A by the formulas 

(21 3) ^ D S^sT =T' ^AD S^*U = U n S ' 
[AD S]t(A/U) = S/U r\S, [AD S]*(S/T) = A/T. 

If {Si} is a nonvoid collection of subobjects of A, then 

(21.4) £ (A/St) = A/U Sit I I (4/50 = A/ZSi. 
A A 

The second isomorphism theorem holds in the form 

(21.5) A D 5 D r implies 4 / S = (A/T)/(S/T); 

the proof using the fact that 

[ i / r D 5 / r ] [ 5 / r ^ 5 ] = [A/T £A][ADS], 

by ABC-4 and BC-5. (This is a typical indication of the force of 
BC-5.) 

The first isomorphism theorem also holds in the form that 

(21.6) ADS, ADN imply (SU N)/N &S/S Hi N, 

where the isomorphism in question is the equivalence factor of the 
mapping [A/N^A] [ADS], If T=[A/M^A] is a projection, the 
induced transformations 7r8, and so on, are given by formulas anal­
ogous to (21.3), for MCTCA, LCA, as 

[A/M ^ A]q(A/T) = A/T, [A/M g A]*(A/L) = A/MUL, 

[A/M £A]JL= (MUL)/M, [A/M ^ A]*(T/M) = T. 

In none of these results is ABC-5 used, except in the last case to 
justify the representation of any subobject of A/M in the form 
T/M. 

In axiom ABC-5, one may show that the S whose existence is as­
serted actually has the form irfM, where 7r= [A/ T g A], and thence 
that TTSITSS — S. 

In an ABC-category the class of submappings is entirely de­
termined by the category structure (without intervention of the in­
jections) according to the following readily proved result. 

THEOREM 21.1 (ABC). A mapping a is a submapping if and only 
if it is left cancellable. 

Furthermore, if p is a supermapping p: A—>B, the transformation 
p* is a right inverse of p8: S(A)—*S(B), and if X is a submapping 
X: A—>B, X* is a left inverse of the transformation X8: S (̂ 4)—>S (B). 
Note that these statements are not dual to each other—though the 
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dual statements about X2, X*, pq, p* are, of course, also demon­
strable. Another pair of such pseudo-dual statements is indicated by 
the following theorem. 

THEOREM 21.2 (ABC). A mapping a is a supermapping if and only 
if either a8 is a transformation of S (A) onto S (B) or a* is a one-to-one 
transformation ofS(B) into S (A). 

One may also establish the "extension equivalence" theorem. As 
in (1.3) an extension of G by Q is a diagram 

(21.8) G->E^Q, 

such that X is a submapping, p a supermapping, and image (X) 
= kernel (p). If 

(21.9) G^E/^Q 

is a second such extension (with the same G and Q), a "homo-
morphism" of (21.8) into (21.9) is given by any mapping 7 : E—+E' 
which satisfies the usual commutation relations 

(21.10) p'y = p, X' - 7X. 

THEOREM 21.3 (ABC extension equivalence theorem). Any homo-
morphism 7 of one extension (21.8) of G by Q into another is an equiva­
lence. 

The usual (group-theoretic) proof proceeds by calculating the 
image and the kernel of 7 ; the same calculations may now be re­
produced in categorical language, eventually leaving only the 
equivalence factor 0 in the decomposition (21.1) for 7. This theorem 
is also of interest because the Eilenberg-Steenrod "5 Lemma" on 
two exact sequences of length 5 can be reduced to this theorem, also 
by categorical arguments. 

We mention also that various alternative characterizations of free-
and-direct products (such as Theorem 19.1) as well as the Eilenberg-
Steenrod "hexagon Lemma" can be derived from the axioms of an 
ABC-category; these derivations making heavy use of the addition of 
homomorphisms introduced in §19. 

These deductions indicate that most of the standard properties11 

of homomorphisms between abelian groups (or, of linear transforma-
11 Facts such as the existence of infinite direct and infinite free products (no 

longer identical) or the existence, within the category, of the group Horn (A, B) of all 
homomorphisms of A into B are of course not deducible from our axioms. 
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tions between vector spaces) can be deduced from our self-dual sys­
tem of axioms for an abelian bicategory. We thus provide a precise 
axiomatic proof for the duality phenomena in abelian groups. 
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