
AREA AND REPRESENTATION OF SURFACES 
LAMBERTO CESARI 

What is surface and what is area? This question is not a trivial 
one, because study of the literature reveals that there are several 
relevant concepts of surface and area, just as there are several 
relevant concepts of curve and length (see [l, I J , II.5, V.4] ; numbers 
in square brackets refer to the bibliography at the end of this paper). 
These concepts are not only related to one another, but they are also 
related to the solution of many problems in which they play an 
essential part. My purpose is to discuss the connection of such con­
cepts with calculus of variations and to show how the slow develop­
ment of some of them is closely related to advances in calculus of 
variations. 

During the war years I succeeded in developing a complete theory 
for Fréchet surfaces and Lebesgue area, which was related to previous 
work of McShane and Radó. It was with great pleasure that I learned 
after the war that, at the same time and independently, Radó and 
other mathematicians in this country had developed a theory founded 
upon the same fundamental ideas. The results obtained are partly 
overlapping and partly complementary. This allows us to combine 
our results into a single theory. Now this parallel development is not 
due to chance, but rather to an underlying common aim that has 
been a constant guide in our respective efforts: the aim to obtain a 
more general basis for the theory of double integrals in parametric 
form in calculus of variations. Indeed, the theory for such integrals 
has not yet been finally settled, as has been noticed by both Radó 
and Tonelli. 

The concepts of curve and surface, length and area, were pre­
sented at other meetings of this society by J. W. T. Youngs [59] 
from a general point of view. Therefore I will limit myself here to 
showing only how much our concepts owe to calculus of variations, 
and then I will discuss the most recent and important results con­
cerning the problem of area and representation of surfaces. 

A complete list of all papers which are related to this topic would 
be too extensive for the purposes of the present paper. The bibliog­
raphy at the end is not meant to be complete in any sense. The recent 
book of Radó, Length and area [ l ] , will be used as a general refer-
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ence. Several papers that have been published since that book ap­
peared are included in the bibliography, provided that they are 
directly related to our main topic. 

The first question which led to the modern theory of calculus of 
variations was the problem of Dirichlet, that is, the problem of de­
termining a function f(x, y) whose values are given on the boundary 
of a Jordan region A and for which the integral 

/£[(iHiy>-
assumes its minimum value. From the fact that the set of the values 
assumed by such an integral has a finite lower bound, mathematicians 
inferred the existence of the minimum. This became a general 
principle, called the principle of Dirichlet, and it gave rise immedi­
ately to numerous applications. The most general of these was cer­
tainly the one made by Riemann, who based his theory of abelian 
functions entirely on this principle. After criticism by Weierstrass 
the principle of Dirichlet was abandoned and the question of de­
termining a harmonic function that assumed assigned values on the 
boundary of a Jordan region was settled in another way by Neumann, 
Schwarz, and Poincaré. 

The possibility of giving a direct demonstration of the principle 
of Dirichlet was recognized by Arzelà, who was the first to try to 
prove the principle of Dirichlet in connection with concepts of the 
functional analysis of Volterra. Arzelà did not succeed in this, but his 
research, continued by Hilbert, led the latter in 1900 to the first 
proof of the principle. This achievement gave rise to a good deal of 
research between 1900 and 1904. We mention the work of Lebesgue, 
Bolza, Carathéodory, who gave existence theorems for problems of 
calculus of variations under hypotheses which were still rather re­
strictive. However, the method created by Hilbert did not yield 
further results, so that several authors later turned to other pro­
cedures for the solution of maximum and minimum problems in 
calculus of variations. Of these authors I would like to mention 
Hadamard and Levi. 

The reason for this fact was realized later when Tonelli observed 
first that the concept of semicontinuity introduced in 1906 by Baire 
in the theory of real functions should be introduced as the funda­
mental concept. Tonelli noted that the most common functionals of a 
curve in calculus of variations are lower or upper semicontinuous. In 
particular the "length" of a curve is the simplest example of a func­
tional of a curve that is lower semicontinuous. Indeed all the regular 
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positive functionals of a curve are lower semicontinuous. 
Arising from the functional analysis of Vito Volterra and the notion 

of semicontinuity introduced by Tonelli into calculus of variations, 
the direct method of calculus of variations for functionals of a curve 
was developed for the last thirty years and, with Menger, we may say 
that the results obtained are now classical. This work was carried 
on by mathematicians all over the world. I mention only Graves, 
McShane, Reid in the United States and Tonelli, Baiada, Cinquini, 
Mania in Italy. 

A new step is due to Bouligand and Menger. The former observed 
that, upon introducing a suitable metric in the space of curves, each 
integral along a curve, which is positive, regular, and therefore lower 
semicontinuous, can be considered as a "generalized length" for the 
curve. The latter observed that by means of this approach, combined 
with the Weierstrass integral, it is possible to extend the direct 
method to functionals of a curve in any abstract space. With this 
modern extension the ordinary length of a curve becomes only the 
most important "functional of comparison," but these functionals 
are always lower semicontinuous. 

I would like to mention, however, that the concept of lower semi-
continuity, which also had a fundamental role in Marston Morse's 
topological theory of calculus of variations, has been replaced in his 
more recent work by the concept of upper reducibility. Also in this 
connection operational concepts and metrization seem to have in­
creasingly wide application. 

Let us now turn our attention from curves to surfaces, from line 
integrals to surface integrals, from length to area. 

Of all definitions of surface area which were known at the beginning 
of this century there was only one which was completely general 
and which satisfied the principle of lower semicontinuity: the one 
proposed by Lebesgue in his mémoire in 1900 [33]. Geöcze worked 
a long time on this definition during the period from 1905 to 1916. 
Tonelli [53] used it in 1915 for a demonstration of the minimum 
property of the sphere known as the isoperimetric inequality. This 
inequality was proved recently by Radó [44] for general closed con­
tinuous surfaces. As proved by Radó, the fundamental isoperimetric 
inequality states that 

VKS) è L*ÇS)/(36w), 

where L(S) is the Lebesgue area of the closed surface S and V(S) 
is the volume enclosed by S according to the following definition. Let 
i(x, y, z) be the "topological index" of the point (x, y, z) with respect 
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to 5, where i(x, y} z) = 0 for points on 5. Then V(S) is defined as the 
integral of | i(x> y, z) | . Just as the Lebesgue area L(S) is a lower semi-
continuous area, so also is the volume V(S) considered by Radó 
a lower semicontinuous volume. 

Of course, if the surface 5 is an ordinary surface or, at least, admits 
of a lipschitzian representation, then all definitions of area and of 
volume agree and the above inequality is to be expected. But with 
the concept of Lebesgue area and the preceding definition of volume, 
this inequality is completely general and holds for general surfaces 
even in cases in which not all definitions of area and volume agree. 

Let us recall the main concepts of the theory of curves 

C: x = x(t), y = y(t), z = *(/), a S t ^ b. 

A curve C has finite length 1(C) if and only if the functions that 
represent it are of bounded variations ; the length of a curve is always 
greater than or equal to the value of the classical integral : 

1(C) è f (xn + y* + z'2)l*2dt; 

the length of a curve is equal to the classical integral if and only if 
the functions that represent the curve are absolutely continuous. 

These three fundamental facts have been extended by Tonelli 
[54] to the Lebesgue area of nonparametric surfaces 

z = f(x, y), (x, y) E A. 

Tonelli introduced appropriate definitions for bounded variation and 
absolute continuity of the function ƒ (x, y). The main results are the 
following: the surface S has finite Lebesgue area if and only if the 
function/(x, y) is of bounded variation; the Lebesgue area L(S) of S 
is always greater than or equal to the value of the classical integral: 

L(s) è f f (ï + p* + q*)1'2, p = ^> q = ~; 
J J A ox ay 

the Lebesgue area of the surface S is equal to the classical integral if 
and only if the function ƒ (x, y) is absolutely continuous [54]. 

I t is also remarkable that these concepts of bounded variation 
and absolute continuity introduced by Tonelli for the problem of 
Lebesgue area for nonparametric surfaces 5 have had, from 1926 to 
the present, extensive and varied applications in the theory of dif­
ferential equations, in potential theory, and in the theory of double 
and multiple Fourier series. But one of the main applications is cer-
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tainly that in calculus of variations to double integrals over a non-
parametric surface 5 [56]: 

Is = J j ƒ(*, y, zf p, q)dxdy. 

A complete theory based on the concept of semicontinuity has been 
created since 1929 by Tonelli, Cimmino, Cinquini, Scorza in Italy 
and by Graves, Bliss, McShane, Morse, Reid in the United States. In 
this theory the problem of Dirichlet and also the more difficult 
problem of Plateau were settled by Courant, Douglas, McShane, 
Morse, Radó, and Tonelli [55]. At the same time some more gen­
eral variational problems for surfaces in parametric form 

S: x — %(u, v), y = y(u, v), z = z(u, v), (u, v) £ A, 

were studied by McShane [34, 35, 36, 37] and Radó [45]. 
From the above discussion of applications in calculus of variations 

it appears advisable to choose for general surfaces a concept of area 
which satisfies the fundamental principle of semicontinuity, namely 
the Lebesgue concept of area, which was so useful for nonparametric 
surfaces. 

Naturally for applications in which the principle of semicontinuity 
is not so important, and even for calculus of variations if we do not 
base it on the concept of semicontinuity, other definitions of area 
can also be considered. In this connection I mention the definitions 
of Minkowski and Carathéodory. Carathéodory introduced a general 
and convenient concept of linear measure or length, and of superficial 
measure or area, of any point set in space. A complete theory for 
rectifiable sets is due to A. S. Besicovitch. This theory was extended 
by A. P. Morse and J. F. Randolph by use of a more general concept 
of Carathéodory measure; it was further extended to point sets of 
finite area by Besicovitch, Busemann, Fédérer, and other authors. 
This theory has been very carefully worked out and is related to 
recent trends in the theory of integration. Another definition of area 
is due to Banach [4] and Vitali [57]; the theory for this area was 
carried out by Banach and Schauder. 

Of course all definitions of area coincide in ordinary cases, and 
they also coincide when the surface has a lipschitzian representation ; 
in the general case they no longer coincide. 

Today we have various definitions of area which satisfy the prin­
ciple of semicontinuity, but in all such cases it follows from the 
research of Radó and myself that they coincide with the Lebesgue 
area. First of all let us mention the so-called Geocze area G(S) in the 
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sense used by McShane [34] and Morrey [41 ], which is introduced 
by means of the topological index of a point with respect to a closed 
plane curve. I have shown [16] that the lower semicontinuous 
Geöcze area G (S) coincides with the Lebesgue area L(S). Radó 
[l, V. l ] has introduced a "lower area" that is also lower semicontinu­
ous. I have completed Rado's proof that it coincides with the 
Lebesgue area [l, V, 4.8]. Quite recently Radó modified previous 
definitions of Cauchy and Favard in order to obtain two new defini­
tions of area satisfying the principle of semicontinuity. Jointly with 
Helsel [46] and Mickle [47], he has shown that these two concepts 
of area also coincide with the Lebesgue area. 

In 1928, in his communication at the International Mathematics 
Meeting of Bologna, Radó [48] had already stated the conjecture 
that each lower semicontinuous functional over a surface which 
coincides with the elementary area for polyhedral surfaces must 
coincide with the Lebesgue area for any surface, a t least under very 
weak and natural conditions. From this point of view, which we 
shall call the tendency for an axiomatic definition of area, contribu­
tions have been made by Kempisty, Fréchet, Scorza, Zwirner, 
Stampacchia. 

On the same occasion Radó [48] also observed that it would be 
desirable to define axiomatically the area a(S) of the surface 5 by 
means of a Dedekind cut in the field of real numbers. Indeed, if we 
require a(S) to be a lower semicontinuous functional coinciding 
with the elementary area upon polyhedral surfaces, then it is easy to 
prove that a(S)SL(S). Therefore L(S) is an upper bound for the 
area a(S). If we require a(S) to be greater than or equal to the value 
of the Geöcze area G(S)1 which is intuitively the smallest possible 
interior area, then a(S) also has a lower bound 

G(S) ^ a(S) S LÇS). 

Radó's conjecture that G(S)—L(S) has now been proved by myself 
[16], and therefore the Lebesgue area is, in this sense, determined by 
an intuitively motivated Dedekind cut. 

The notion of surface 5 that we use is not the set of points covered 
by it, but comes from the consideration of all possible "transforma­
tions" or "representations" 

(1) T: x = %(uy v), y = y(u, v), z = z(u, v), (u, v) £ A, 

that are equivalent in the Fréchet sense. Each of these equivalent 
transformations gives a representation of the surface S. It is well 
known that the Lebesgue area L(S) does not depend upon the repre-
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sentation, but is a property of the surface itself. If we require the 
notion of Fréchet equivalence to conserve the orientation of the 
boundary A* of the Jordan domain A, as McShane did [34], then we 
speak of "oriented Fréchet surfaces"; otherwise, simply of "Fréchet 
surfaces" or "surfaces." 

Important research in set topology, related to this concept of a 
surface, was carried out by Kerékjârto, R. L. Moore, Whyburn, 
Wiener, and Wilder. Of this research I point out the theory of upper 
semicontinuous collections and the theory of cyclic elements; these 
led to the topological notions of the cactoid of R. L. Moore and of 
the hemicactoid of Morrey. A complete revision of the applications 
of this theory to surface area theory has been made by Radó and his 
school, so that we now have a very simple and clear theory of the 
topology of Fréchet surfaces [l, II] . Each transformation T is the 
product of a monotone transformation M and of a light transforma­
tion L: T=LM. This is a monotone-light factorization of the trans­
formation T. M maps A onto a Peano space Tt that is called the 
"middle space" ; L maps 9JÎ onto S. For two different representations 
T\ and T2 of the same surface S, we have 

Tx = LMi, T2 = LM2; 

that is, we have different monotone factors but the same light factor 
L. The middle space is the cactoid or hemicactoid of the previous 
theory. Youngs has succeeded in giving a complete intrinsic topo­
logical characterization of the notion of Fréchet equivalence. These 
results of Youngs are now in the process of publication [62]. 

If we divide A into a finite number of Jordan domains A1, A2, • • • , 
An by curves 71, 72, • • • , 7™ and let Si, S2, • • • , Sn be the continu­
ous surfaces defined by (1) upon Ai, A2, • • • , An respectively, then 
we have 

US) è JbuSi). 

I t is of the greatest importance to have conditions sufficient for 
equality to hold in this relation. Theorems of this type, or addi-
tivity theorems, have been proved and applied by Radó [l ] and Youngs 
[59]. 

In 1924, in order to extend to surfaces the theory of Jordan and 
Tonelli for length of curves, Banach [4] and Vitali [57] gave, inde­
pendently of each other, a theory for the area of surfaces in para­
metric form: 
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(2) S: x = x(u, v), y = y(u, v), z = z(u, v), (u, v) £ A. 

They were the first to observe that properties of a surface, for instance 
that of having finite area, depend upon properties, not of the single 
functions xy y> z of the representation, but of pairs of these functions: 

(y = y(u. v). iz — z(u. v), (x — x(ut v), 
2V V ' T2: < T3: < 

(z = z(u, v), \x = x(u, v), (y = y(u, v); 
that is, they depend upon properties of the three "flat surfaces" or 
the plane transformations which are the three projections of the 
surface upon the three coordinate planes. From this point of view 
the results obtained by Banach and Vitali constitute a formal ex­
tension of the theory of arc length, in the sense of Jordan and Tonelli, 
to general continuous surfaces given in parametric form. However, 
they made use of a concept of surface area which differs from Le-
besgue area and lacks the property of lower semicontinuity. 

In quite different ways, and independently, Radó [l, IV.4, IV.5] 
and I [8, 12, 14] introduced concepts of plane transformations of 
bounded variation. These concepts, however, are completely equiva­
lent, as Radó [50] has shown. 

Furthermore, during the war I [8] proved the following 

THEOREM 1. The Lebesgue area of a general surface S is finite if and 
only if the three plane transformations Ti, T2l Ts, which are obtained 
by projecting the surface upon the three coordinate planes, are all of 
bounded variation. 

This result can also be expressed by saying that the Lebesgue area 
of the surface S is finite if and only if these three projections 7\, T2l Tz, 
considered as flat surfaces, all have finite Lebesgue area. 

One result in Rado's theory, as well as in mine, is that each con­
tinuous surface of finite Lebesgue area has generalized Jacobians 
Ji(u, v), J2(u> v), Js(Uy v) almost everywhere in A. For such surfaces 
these generalized Jacobians are L-integrable functions in A, generalize 
the ordinary Jacobians 

d(y, z) d(z, x) dix, y) 
j , 

d(u, v) d(u, v) d(u, v) 

formed with ordinary first partial derivatives, and coincide with 
them provided the ordinary Jacobians exist almost everywhere. 

Radó, Reichelderfer, and I, at the same time and independently, 
have each proved the following 

THEOREM 2. If the surface S has finite Lebesgue area, then the plane 
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transformations Ti, T2, Tz are of bounded variation and have generalized 
Jacobians Ji(u, v)t Ji{u, v)> Jz(u, v) a.e. in A ; furthermore the Lebesgue 
area is greater than or equal to the classical integral 

L(S) à ff (J2i(u, V) + j\(u, v) + j\(u, v))mdudv. 

This result is also in agreement with the classical theory of Banach 
concerning functions of a set. 

In completely different ways Radó and I have each introduced con­
cepts of absolutely continuous plane transformations. These concepts 
are also equivalent, as Radó [50] has shown. Radó and I have each 
proved the following 

THEOREM 3. The Lebesgue area is equal to the classical integral if 
and only if the three plane transformations Ti, JT2, 2̂ 3, projections of 
the surface upon the coordinate planes, are absolutely continuous. 

I [ l l , 25] have also proved several tangential properties for the 
most general surfaces of finite Lebesgue area. 

The classical results of Jordan and Tonelli for curves and the results 
of Tonelli for surfaces in nonparametric form are now completely 
extended by these theorems concerning Lebesgue area to surfaces in 
parametric form. These theorems also establish the fact that the 
concepts of total variation and absolute continuity for plane trans­
formations which were introduced by Radó, Reichelderfer, and my­
self are completely adequate. 

I t is of interest to note that the concept of plane transformation of 
bounded variation and the concept of absolutely continuous plane 
transformation have been applied to the important problem of the 
transformation of areas or of double integrals by Radó, Reichel­
derfer, Helsel, and Mickle here in the United States, by myself [24] 
in Italy, obtaining equivalent and very general formulas of trans­
formation. 

The Kolmogoroff principle has been proved and generalized by 
Mickle and Helsel [32] and has been applied to the stretching process 
for surfaces and in the proofs of additivity theorems. The main 
results that I have mentioned solve the fundamental problems for 
the Lebesgue area of general surfaces. The following is another very 
important problem. 

We know that each continuous rectifiable curve has at least one 
representation for which the length is equal to the classical integral 
and such a representation is obtained in a very simple way by choos­
ing as parameter the length of the arc from a fixed point to a variable 
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point of the curve. We also know that for non-rectifiable curves the 
problem of a special representation has been solved by Marston 
Morse. 

For surfaces we have the following two problems, which may be 
termed representation problems: 

(i) Given a surface S of finite Lebesgue area, does there exist a 
representation for which the Lebesgue area is given by the classical 
integral calculated with generalized Jacobians? 

(ii) Given a surface 5 of finite Lebesgue area, does there exist a 
representation for which the functions x, y, z have first partial deriva­
tives a.e. in A and for which the Lebesgue area is given by the 
classical integral calculated with ordinary Jacobians? 

McShane studied these problems because of important applica­
tions to the calculus of variations and, in particular, to the Plateau 
problem. McShane [36] showed that such a special representation 
exists for the so-called "saddle surfaces." More generally, Morrey [43] 
found such a representation for the surfaces that we call "open 
nondegenerate," that is, according to the nomenclature of Radó, 
those for which the middle space is a 2-cell. For such surfaces Mc­
Shane and Morrey found a new type of representation, the so-called 
"almost conformai représentation." A representation (1) of a surface 
S is called "almost conformai" if 

(a) the functions x, y, z are absolutely continuous in the sense of 
Tonelli in A ; 

(b) the first partial derivatives x^) X|>, , z^ are L2-integrable 
functions in A ; 

(c) we have E = G, 7^=0, a.e. in A, where E = x2
u+yl+z2

t, G = x2
9 

+yl+£, F = xuxv+yuyv+zuzv. 
For such representations the Lebesgue area is necessarily equal to the 
classical integral. The theorem of Morrey can now be rephrased as 
follows: Each open nondegenerate surface of finite Lebesgue area 
admits of at least one almost conformai representation upon A for 
which the area is given by the classical integral. 

We know that a Jordan domain can be represented upon a circle in a 
conformai way. We also have the Schwarz theorem : each polyhedral 
surface which is open nondegenerate can be represented upon a circle 
in a conformai way; that is, it admits of a representation (1) for 
which properties (a) and (b) hold and also for which the relations 
E = Gy F=0 hold everywhere in A with the exception of a finite set of 
points, the points which correspond to the vertices of the polyhedral 
surface. By an almost conformai representation of any open non-
degenerate surface we mean one for which the exceptional points 
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form a set of measure zero. The theorem of Morrey thus appears as 
a generalization of Schwarz's theorem. 

The almost conformai representations of an open nondegenerate 
surface of finite Lebesgue area satisfy a minimum principle [15, 17]: 
Among all possible representations of the surface, which are equiva­
lent in the sense of Fréchet and which satisfy conditions (a) and (b), 
there exist some for which the double integral of the sum of the 
squares of all the first partial derivatives of the functions x, y> z is a 
minimum: 

Ç C 2 2 2 2 2 2 

I I (%u + Ju + zu + xv + yv + zv)dudv. 

This minimum is equal to the Lebesgue area of the surface itself. 
The minimal representations are all almost conformai and the al­
most conformai representations are all minimal [lS, 17]. 

This problem is considered here as a problem of calculus of varia­
tions and is very similar to the problems of Dirichlet and Plateau. 
Indeed, the proofs of McShane and Morrey contain ideas similar to 
that used by Lebesgue, Radó, Courant, Tonelli for such variational 
problems. Using the direct method of calculus of variations, I have 
proved a theorem of the type of Schwarz's for the representation of 
polyhedral surfaces, and I have also proved the theorem of Morrey 
directly [lS]. 

Starting from this result I have, moreover, succeeded in proving 
the following 

THEOREM 4. [23] Each general surface S of finite Lebesgue area ad­
mits of a representation upon a circle A such that the Lebesgue area is 
equal to the classical integral calculated with generalized Jacobians 

L(S) = f f (j\ + j \ + Jl)mdudv. 

In such a representation the nondegenerate parts of the surface, 
that is, in the nomenclature of Radó, the parts that come from the 
cyclic elements of the middle space, are represented almost con-
formally. This solves the first representation problem. 

Now by means of an observation that was suggested by a previous 
simpler remark of Youngs, I have proved the following 

THEOREM 5. [29] Each general surface S of finite Lebesgue area 
admits of a representation upon a circle A such that 

(a*) The functions x, y, z have ordinary first partial derivatives a.e. 
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in A] 
(b) the first partial derivatives xu, xv, • • • , zv are L2-integrable func­

tions in A ; 
(c) we have E = G, F = 0 a.e. in A, where E = xl+yl+zl, G = x* 

+yl+**, F = xuxv+yuyv+zuzv; 
(d) the Lebesgue area is given by the classical integral calculated with 

ordinary Jacobians: 

us) = e ç (\d{% z)y i p (2> x)y i [d(x> y)y\,2dudv 
This theorem solves the second representation problem. Here we 

have replaced the condition (a) of the theorem of Morrey by 
the weaker condition (a*). This fact is related to a remark of 
Mickle [40]: there exists a surface S of finite Lebesgue area which 
admits of no representation satisfying the strong condition (a). In 
this new weaker sense the above theorem can be expressed by saying 
that each continuous general surface of finite Lebesgue area admits 
of an almost conformai representation. 

These concepts and results are already being applied to the notion 
of integral upon surfaces in parametric form. I recall here that the 
notion of integral upon a surface 

Is = I I F(x, y, z, Ji, 72, Jzjdudv 

as a Lebesgue integral was studied in 1932 by McShane [34, 35, 37] 
for surfaces S that are given by representations satisfying conditions 
(a) and (b). More generally Radó [45] studied the same concept in 
1944 under the weaker hypotheses that the functions x, y, z have 
first partial derivatives a.e. in A and that the Lebesgue area is finite 
and given by the classical integral with ordinary Jacobians. 

Recently, in 1946, I [21 ] introduced the notion of integrals Is as a 
Weierstrass integral for any continuous surface of finite Lebesgue 
area given by any continuous representation. I proved that the 
Weierstrass integral Is is equal to the Lebesgue integral for each 
representation for which the Lebesgue area is given by the classical 
integral and, finally, that the necessary conditions [26] and the 
sufficient [27] conditions determined by McShane and Radó for 
semicontinuity hold for the class of the most general continuous 
surfaces. From the above solution of the second representation 
problem we know now that there always exists at least one representa­
tion of the surface 5 for which the Weierstrass integral Is can be 
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calculated as a Lebesgue integral with ordinary Jacobians, that is, 
as one of the integrals studied by Radó [45]. 

With all this research in which the efforts of so many mathema­
ticians have been concentrated, perhaps the way is now open for 
further applications in analysis. 
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