
A NOTE ON THE UNIQUE FACTORIZATION OF 
ABSTRACT ALGEBRAS 

FREDERICK B. THOMPSON 

In their monograph1 Direct decompositions of finite algebraic sys­
tems, Jónsson and Tarski have established the unique factorization 
theorem and several related results for a comprehensive class of finite 
abstract algebras. Every algebra SÏ of this class is constituted by a 
set A of arbitrary elements, by a binary operation + , and possibly 
by other operations 00, Oi, • • • ; the only conditions imposed on §1 
are that A be closed under all the operations involved and that it 
contain an element z which is a (both-hand) zero element for the 
operation + and is idempotent under the remaining operations. At 
the end of their paper, Jónsson and Tarski raised the problem of 
whether their results can be extended to an even more comprehen­
sive class of algebras, in fact to algebras 2Ï differing from those 
mentioned above in that the element z is only to be idempotent under 
all operations involved (not necessarily being a zero element for + ) . 
The purpose of this note is to show that the solution of the problem 
just mentioned is a negative one. 

We consider algebras tytPtt defined in the following way: p and t 
are positive integers; %Ptt is constituted by the set At of all non-
negative integers less than t, and by the operation ®p defined by the 
following formula: 

(hp + m)®p(kp + n) = mp + n 

where h, k, mt and n are non-negative integers, m<p and n<p. In 
particular, w©it; = 0 for all non-negative integers u and v. In what 
follows we shall be interested in only those algebras %Ptt in which 
p\t and p2^t; we denote by K the class of all such algebras. As is 
easily seen, in every algebra §!„,« of K the set of all elements At is 
closed under the operation ®p and contains an element, in fact 0, 
which is idempotent under this operation. The following two theorems 
express the fundamental properties of the algebras of the class K 
with respect to cardinal multiplication. 

Presented to the Society, November 27, 1948; received by the editors September 
27, 1948. 

1 B. Jónsson and A. Tarski, Direct decompositions of finite algebraic systems, Notre 
Dame Mathematical Lectures, No. 5, Notre Dame, Indiana, 1947. The notations of 
this monograph are applied in the present note, except that the relation of iso­
morphism between two algebras is denoted by the symbol ss. 
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THEOREM 1. If 3Im,r and 3tn,» are any two algebras in K, then 3lmn,r« 
is also an algebra in K and we have 2tmn,r« = 2 W X 2ln,«. 

PROOF. The first part of the conclusion is obvious. To obtain the 
second part, remember that m\ r, and hence r — uni for some positive 
integer u. Consider any two elements: h of the algebra 3L,r and k of 
the algebra 3tnt«. Clearly we can write h and k in the forms h = honi+hi, 
k=>kon2+kin+k2, where hi<mt ki<n, k2<n. We now correlate with 
the ordered couple h, k the number: 

f(h, k) = (faun + h0n + ki)mn + (hxn + k2). 

I t is now a routine matter to check that this correlation establishes the 
desired isomorphism. 

THEOREM 2. Let %p,tbe an algebra in the class K, and let 33 and Ê be 
any two algebras each constituted by a set of elements and a binary opera­
tion. If 

2tP,*Ê=!S8Xe, 

then there are algebras 9L,r and 2tn,« in K such that 

« S Î U r , « S i , , . 

PROOF. Let S3 consist of the set B of r elements and the binary 
operation O î let S consist of the set C of s elements and the binary 
operation • • Clearly rs = t. Let ƒ map S3XS isomorphically onto 
%Ptt. For b(£B, let Bb denote the set of non-negative integers a<p for 
which ƒ(i, c)^a (mod p) for some £ £ C . Similarly Cc will denote the 
set of non-negative integers a<p for which / ( i , c)s=a (mod p) for 
some & £ 5 . 

(1) For bu b2Ç£B, the sets J5&1 and Bb2 are either disjoint or identical. 
For suppose ai£I?&in.B&2 (that is, a\ is in the common part of 

Bbl and 3&2), a2ÇzBbv a2(£Bb2. Then there are integers a / , a " , a2 , 
a3, a3' such that 

/ ( i l , ci) = ar/> + ffi, f(b2, ci) = öiV + «i. 

/ ( i i , c2) = «2^ + a2l / ( i 2 , c2) = azp + «3, 

for some c%, c{, c2GC. We see that azÇ,Bhv thus a%^a2. 

f(bi O ii , ci D et) = /( i i f ci) 0 / ( i i , ci) « (ai> + ai) ® {a[p + ax) 

= axp +«1=» (ai'̂ > + ai) @ (axp + ax) 

« /(i2, cl) 8 / ( i 2 , ci) » / ( i 2 O i2, c[ • ci). 
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Therefore since ƒ is biunique, faOfa — faOfa. Thus, by a similar 
manipulation : 

a2p + a2 = f (fa O bh c2 • c*) = f (fa O ô2, c2 D c2) = a3/> + 03. 

Consequently #2 =#3, which contradicts the above assertion that 
#2 7*^3. 

(2) For c £ C and &£J3, the set Ccr\Bb contains exactly one ele­
ment. 

Indeed, let ƒ(&, c)=a'p+a; thus aGCc^Bb. Suppose a^a were 
also in CcC\Bb. Thus for some fa and clyf(fa, c) =a{p+ai and ƒ(&, Ci) 
~a{' p+di. Thus 

/(*i O i i , c D « ) = 0i/> + ai = / ( J O b, ci • ex) ; 

and s i n c e / i s biunique, bOb = faOfa, cD^ = ^iD^i« Therefore 

ƒ(£ O &, c • c) = a^ + a = «i^ + «i 

and a —at. 
(3) For fa, faG.B, the sets JE^ and J3&2 have the same number of 

elements. 
For suppose Bbl~ {#i, a2, • • • , #n}, J5&2= {a(, • • • , #£,}, with 

n>m. Let c*£C be such that CCiC\Bbl — {a*} for i = l, • • • , n. 
Clearly CCir\Bb2 = CCj(^Bb2 for some i, j , i&j. Therefore CH and Cc/ 

are neither disjoint nor, by (2), are they identical, thus contradicting 
(1). 

(4) For bGB, let b/C be the set of all f (fa c) for c&C. Either J56 

and &/C are disjoint or BbQb/C. 
Suppose aiE:Bbr\b/C and a2GBb. Then, for some Ci, C2GC and 

integer ai, ƒ(&, c1)=a1 , ƒ(&, c2)=a2 /^+a2 . Let &0, Co be such that 
f(fa, c 0 )=0 . Thus ƒ(60O&, Co\3ci) = 0 © a 1 = a1; therefore b0Ob~b. 
Consequently 

ƒ(&, co D £2) = f (fa 0 ^ o D ^ ) = O e (alp + a2) = a2; 

and 02&/C. 
Let w be the number of elements in each Bb; let m be the number of 

elements in each Cc. 

(5) mn = ^. 

This follows immediately from (1) and (2). 

(6) m2 Sr\ n2 £ s. 

Suppose ai, a2&Bb. Thus f(b, ci)=*a{p+ax, f (fa C2)^aipJta2. 
f(bOb, CiHc2) ^axp+a2. Therefore the set bQb/C of all f(bOb, c) for 
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cÇzC contains at least n2 elements. But bOb/C contains 5 elements. 
Thus n2^s. Similarly m 2 g r . 

(7) m\ r; n\ s. 

For some &0£-B, consider J5&0. There are nt/p elements of At whose 
residues mod p are in J3&0. If k is the number of sets b/C such that 
Bb0 — Bby then nt/p = ks, since b/C contains 5 elements. Thus k = nt/ps 
~nrs/nms~r/m; therefore m\r. Similarly n\s. 

(8) ®S8L f r ; e^2L,s . 

By (1), (3), (4), and (5), we see that there are just m elements b£.B 
such tha t BbQb/C. Let these elements be b0, bi, • • • , &m_i, where 
the numbering is arbitrary except that 0 £ 5 6 o . Let &iO&y = &m+i, 
i, j<m. I t is easily checked that this definition is permissible. For 
each i, 0 ^ i < m , we assign (in arbitrary order) indices m2+i, m2+m 
+i, m2+2m+ii • • • , r—tn+i to all those elements bÇ:B which have 
not been previously numbered and for which Bb = Bbv Let <t>(bi) =i. 
Clearly <j) is biunique on B to Ar, the set of elements of 31™ ,r. Consider 
bhm+k, bum+vÇ:B, k, v<m; 

f(bhm+k O bum+v, c D O = (k'p + *) 0 (v'p + v) = kp + v 

= f (fik O ft., C") = f(fikn+v, C") 

for some cnÇz.C. Thus &Am+fcO&Mm+v = ZwH. Therefore 

<l>(fihm+k O &«m+ï) ^ <t>(bhm+k) ® m <t>{bUm+v)* 

Consequently $ ^ 3 L , r . Similarly S^3ln,.. 
The theorem is now a consequence of (5), (6), (7), and (8). 
If, instead of algebras %v,t of the class K, we speak of their iso­

morphism types aVtty and denote the class of all such isomorphism 
types by K', then an essential part of the contents of Theorems 1 
and 2 can be expressed in the following way. 

COROLLARY 3. The cardinal product PXy of two isomorphism types 
is in K' if and only if both j3 and y are in Kf. 

Furthermore, in each particular case we can easily determine 
whether an isomorphism type aPtt is decomposable and can describe 
all of its decompositions into indecomposable factors. We apply here 
Theorems 1 and 2 and make use of the obvious facts that a\t\ is the 
unit type (the isomorphism type of a one element algebra) and that 
two isomorphism types am,r and 

0Ln,s are identical if and only if 
m = n and r = s. In this way we see, for instance, that the isomorphism 
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type «2,4 is indecomposable; «2,8 has, apart from order, the unique 
decomposition into indecomposable factors: 

«2,8 = «1,2 X «2,4Î 

and finally a2,i2 has two different decompositions into indecomposable 
factors: 

«2,12 = «2,6 X «1,2 = «2,4 X «1,3-

Thus the last example shows that the refinement theorems 4.7 and 
4.8, as well as the unique factorization theorem 4.9, of Jonsson and 
Tarski cannot be extended to algebras which have an idempotent 
element but not a zero element. The problem whether the cancella­
tion theorem 4.10 can be extended to such algebras still remains 
open. 

UNIVERSITY OF CALIFORNIA 

NOTE ON A PAPER BY C. E. RICKART 

R. P. DILWORTH AND MORGAN WARD 

In a recent issue of this Bulletin,1 C. E. Rickart proves the fol­
lowing two theorems : 

THEOREM 1. Any one-to-one multiplicative mapping of a Boolean 
ring onto an arbitrary ring is necessarily additive. 

THEOREM 3. Any one-to-one meet preserving mapping of a distribu­
tive lattice onto a distributive lattice is also join preserving. 

We should like to point out that both of these theorems are simple 
consequences of the following well known principle of lattice theory: 

Any one-to-one mapping of one lattice onto another lattice which 
preserves order both ways is a lattice isomorphism. 

Now a one-to-one meet preserving mapping of one lattice onto 
another preserves order both ways; for if x and x' denote correspond­
ing elements, 

a ^ b <=t a C\ b = b <=± a' C\ V = V <=± a' ^ b'. 
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