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The aim of this paper is to extend theorems on the best approxima­
tion of a given function by a polynomial of a given degree, or more 
generally by a linear combination of given functions, first to the case 
where the approximating function is to be taken from a more general 
family of functions, which satisfies the requirements of continuity, 
solvence and unisolvence, to be specified below, and secondly to a 
class of related geometrical problems, for which that of approximat­
ing a curve, or six given points, by an ellipse may serve as an example. 
The best approximation is said to be furnished by that curve for 
which the maximum distance between corresponding points of the 
approximating and the approximated curves is as small as possible.1 

Let (S) be a family of curves S represented by one-valued functions 
y = S(x)t — 1 ^ # ^ 1 . The family (S) is assumed to be w-parametric, 
solvent, unisolvent, and continuous; more explicitly we assume: 

1. Solvence: for any n values xi, • • • , xn with — l ^ # i < • • • 
<xn^l and arbitrary real numbers yi, • • • , yn there exists a func­
tion S of (S) with S(pCi)=*yi, i = l , • • • , n; 

2. Unisolvence: only one such function exists, in the extended sense 
that not only, for any two different functions So and Si of (5), So —Si 
has less than n roots (zeros), but also that this is true if any root x 
with \x\ < 1 for which So — Si does not change sign between x — e 
and x-\-e is counted as two roots; 

3. Continuity: S(x) — S(x; Xi, • • • , xn) yu • * * » yn) is a continuous 
function of xf yu • • • , y^ 

It follows that there cannot exist n + 1 values — 1 tkxo< • - • <xn 

^ 1 for which S0 — Si has "alternating signs," that is, is alternatingly 
non-negative and non-positive. 

For any curve S, a~a(S) shall denote the supremum of the values 

Received by the editors May 21, 1948. 
1 For the approximation by linear systems of functions see S. Bernstein, Leçons 

sur les propriétés extrêmales et la meilleure approximation des fonctions analytiques d'une 
variables réelle, Paris, 1926, Chap. 1. The approximation of systems of points in space 
and to some extent also of functions of several variables by linear functions and other 
polynomials is considered by P. Kirchberger, Ueber Tchebychefsche Annaeherungs-
methoden, Math. Ann. vol. 57 (1903) pp. 509-540. It would be desirable to extend the 
method of the present note to the case of several independent variables. 

According to Kirchberger loc. cit. p. 510, the approximation with least maximal 
deviation was first considered by Poncelet, and more systematically by Chebyshev. 

789 



790 TH. MOTZKIN [August 

I S(x) I ; because of the continuity of 5 in the closed interval — 1 Sx S l 
this supremum is actually attained. We define furthermore the oscilla­
tion number v — v(S)^0 as one less than the maximum number 
of values x0< • • • <xv such that | *S(x0) | =o\ S(xi) = — S(xi~i), 
i = l, • • • , v. If the number of such values is not bounded then 
v(S) = oo. 

A nearest curve So of a family (S) to y = 0 will be a curve for which 
o,o = o'(5o) is as small as possible. The existence, uniqueness and prop­
erties of So are given in the following three theorems. 

THEOREM I. Under the above assumptions on (S) there exists a 
curve y = So(x)t and Vo = v(So)'èn. 

THEOREM I I . For every other curve Si of (S) there are no values 
— l ^ # o < • • • < x n ^ l with \Si(xi)\ ^<TO, i = 0, • • • , n, and alternat­
ing signs of Si(x{).2 In particular v(Si) <n, so that So is unique and 
characterized by v(So)^n. 

THEOREM I I I . Also when x is restricted ton+l values — 1 ^XQ < • • • 
<xn^l with \So(xi)\ = co, i = 0, • • • , « , and alternating signs of 
So(xi), So is the nearest curve to y = 0. Moreover So is the only curve of 
(S) with equal and alternating ordinates at the abscissae #,-. 

Theorems II and III follow immediately by remarking that if a 
curve Si^So of (5) were situated in contradiction to either of them, 
Si — So would have alternating signs for 

To prove Theorem I we observe first that since a(S) is a non-
negative and continuous function cr(yi, • • • , yn) of the values of S 
for any n fixed numbers — 1 ^ # i < • • • < # „ ^ 1 , and since the func­
tions S with a^N are bounded and form a closed family, the in-
fimum do è 0 of a is in fact attained for a certain curve So. 

Now if v0<n (and thus or0>0), then let S be the closed set of all 
roots of | S0(x) ] =CTO, and choose n — 1 values £,-, i = 1, • • • , n — 1, such 
tha t : 

1. Each of the Vo open intervals between consecutive numbers of 
E that give alternating signs to So contains one, or an odd number, of 
the values £»•; 

2. Each of the other open intervals between consecutive numbers of 
S (there may be 0 or a finite or infinite number of such intervals) con­
tains none, or an even number, of the values £»•; 

3. A half-open interval between —1 (inclusive) and the smallest 
number of E, or 1 (inclusive) and the greatest number of S, contains 
none, or any number, of the values £»•; 

2 This contains as a special case a result of de la Vallée- Poussin and its generaliza­
tion by Bernstein loc. cit. p. 6. 
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4. Finally £n-i = 1, if 

(*) — 1 and 1 belong to E and n — 1 — Vo is odd. 

Such a choice is obviously possible. 
We now consider the curves .5' of (5) for which £'(£»•) = »S,o(£»)> 

£ = 1, • • • , # — 1 ; because of the unisolvence assumed they meet only 
for # = £i, and cross each other (that is, their difference changes 
sign) there. Due to the solvence of (S), S' may be chosen so that 
£'((•) =S0(É-)(l-e) for a given value £ of S (different from 1 if (*) 
holds). For small €>0 , 5 ' will be near So everywhere, because of 
the continuity of (5), and owing to the choice of the & we have 
| S' | <(To for every value of 2 (different from 1 if (*) holds) and there­
fore everywhere. Hence cr(S') <<70, against the definition of Co (in 
case (*) holds we obtain | S'( — 1) | O o and apply the same procedure 
to S' instead of So).3 Thus the oscillation number VQ must be at least 
n. Q.E.D. 

The approximation of a given function ƒ(x), continuous for — 1 Sx 
^ 1, by a function of the family (5) has analogous properties; to see 
this replace every function 5 by S—f (which does not affect the con­
ditions imposed on the family) and apply Theorems I, II and I I I . 

More generally the strip \x\ ^ 1 , \y\ < oo may undergo a topo­
logical mapping, the distance between the images of (x, y) and (x, y') 
being defined as \y'—y\. 

If all functions S have the period 2, then the lines x = — 1 and x = 1 
may be identified, and we obtain an approximation of a closed curve 
on a cylinder or within an annulus. 

The extension of the theorems to approximations on the whole 
axis of real numbers, or in an open interval, requires additional 
assumptions. 

The proof of Theorems I—III remains the same if (every S{x) being 
still defined for — 1 Sx S 1) <r(S) denotes the supremum of | S(x) \ for 
values x belonging to a given closed partial set X of —1 Sx SI that 
contains a t least n + 1 numbers. 

In the case of a finite set X= (#o, • • • , xm) the nearest curve can 
be found by determining, for every n + 1 numbers of X, the one curve 
whose ordinates at these abscissae are equal but alternating in sign, 
and choosing the best one from among the finite number of curves 
obtained. 

The related geometrical problem of finding, from a unisolvent 

3 In this case also, a single application of the procedure is sufficient: fix only 
&, • • •» £«-2 and put S'(£)=S0(£)(l-e) for $= - 1 and £ = 1. There cannot be « - 1 
common points of So and .S' within — 1 ^x^l, since » — l — v0 is odd. 
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^-parametric family (S) of plane curves, the nearest curve So to a 
finite number of given points Po, • • • , Pm, ni^n, can be treated 
similarly. The family (S) is supposed to contain, within a certain 
domain of the real plane, through every n points one and only one 
curve, depending continuously on the situation of the n points. The 
nearest curve So (that one for which the greatest distance a(S) from 
it of one of the points P , is as small as possible), is again to be chosen 
from those curves for which n-\-l from among the points Pi have 
equal distances from the curve. Indeed, if the number of approxi­
mated points Pk with maximal distance from So were less than w + 1, 
a small change of the curve could be effected (because of the solvence 
and continuity of the family) diminishing the maximal distance. 

Owing to the unisolvence we can also prove by the same method of 
fixing n — 1 points of the approximating curve as in the proof of 
Theorem I that (n + l)/2(± 1/2) of the points Pk are on either side 
of So, with alternating nearest points Qk on So, provided that there 
are exactly n + 1 points P* and that to every Ph there exists only one 
nearest point Q&. In the general case it is impossible to divide So by 
n — 1 points into closed arcs, alternatingly called positive and nega­
tive, so that every point Pk on one side of So has one of its nearest 
points Qk on a positive arc, and every point Pk on the other side of 
So has one of its nearest points Qk on a negative arc. The value of 
2(7 (So) may be called the breadth of the given point set (Pi) with 
regard to the unisolvent family (S).4 

As examples of unisolvent families we mention the family of all 
straight lines, the family of all conies, the family of all circles or 
more generally of all curves (positively) homothetic to a given, 
closed or infinite, convex curve that contains no straight segment. 
Each family has to be closed by including its limiting curves: points, 
straight lines and pairs of straight lines. Evidently a point cannot be a 
nearest curve, but a pair of straight lines can, and this possibility 
must be separately taken care of when determining the nearest conic 
to a point set (Pi). A straight line as So behaves like a general member 
of the family. 

I t is easily seen that for a family of closed and bounded curves n will 
be odd. 

The family of all parabolas is neither solvent nor unisolvent. Still 
since, in a bounded domain, parabolas that are sufficiently near to 
each other intersect only in 3=n — l points of the domain ("local 

4 For other properties of unisolvent families cf. Th. Motzkin, Sur les arcs dont les 
courbes osculatrices ne se coupent pas, C. R. Acad. Sci. Paris vol. 206 (1938) pp. 1700-
1701. 
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unisolvence"), and since four points through which a parabola exists 
do not lose this property after a small change of position ("local 
solvence") the former results remain valid. However not only pairs 
of parallel straight lines but also single straight lines must be sepa­
rately considered, because the local solvence fails for groups of four 
collinear points. 

There are, of course, families without local solvence or unisolvence, 
for example the family of all cubics, or the family of all circles of 
given radius. The nearest circle of given radius to the vertices of an 
equilateral triangle has the same centre as the triangle, and the ap­
proximated points are thus all on the same side of the circle. The 
nearest circle of given radius to the end points and mid point of a 
large segment has also the same centre as the segment, and there are 
only two farthest points though n = 2. 

In the geometrical problems, Theorems II and III , and in particular 
the uniqueness of the nearest curve, do not subsist. Thus the vertices 
of an equilateral m-gon and its centre have 2m/(3 + ( — l)m) nearest 
straight lines, and m nearest circles. I t seems however that in the 
vicinity of m + 1 given points there are always ra + 1 points with a 
unique nearest curve. 

When approximating an infinite (closed and bounded) set some of 
the n + 1 extremal points Pk may coincide. Thus the nearest straight 
line to an ellipse is its major axis, with 2, instead of 3, farthest points. 
There may also be an infinite number of nearest curves: to a circle, 
every diameter is a nearest straight line, and similarly for any curve 
of constant breadth ; to a circle and its centre there are even doubly 
infinitely many nearest circles, most of them with 2, instead of 4, 
farthest points. 

Similar considerations apply to unisolvent families of curves on a 
surface. The generalization to different definitions of the distance 
of a point from a curve appears to be more difficult. 
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