BIBLIOGRAPHY

- 1. J. J. Dennis and H. S. Wall, The limit-circle case for a positive definite J-fraction, Duke Math. J. vol. 12 (1945) pp. 255-273.
- 2. E. Hellinger and H. S. Wall, Contributions to the analytic theory of continued fractions and infinite matrices, Ann. of Math. (2) vol. 44 (1943) pp. 103-127.
- 3. J. F. Paydon and H. S. Wall, The continued fraction as a sequence of linear transformations, Duke Math. J. vol. 9 (1942) pp. 360-372.
- 4. W. T. Scott and H. S. Wall, A convergence theorem for continued fractions, Trans. Amer. Math. Soc. vol. 47 (1940) pp. 155-172.
- 5. ——, On the convergence and divergence of continued fractions, Amer. J. Math. vol. 69 (1947) pp. 551-561.
 - 6. T. J. Stieltjes, Recherches sur les fractions continues, Oeuvres, vol. 2, pp. 402-566.
- 7. H. S. Wall and Marion Wetzel, Quadratic forms and convergence regions for continued fractions, Duke Math. J. vol. 11 (1944) pp. 89-102.
- 8. E. B. Van Vleck, On the convergence of continued fractions with complex elements, Trans. Amer. Math. Soc. vol. 2 (1901) pp. 205-233.

THE UNIVERSITY OF TEXAS

REMARKS ON THE NOTION OF RECURRENCE

J. WOLFOWITZ

We give in several lines a simple proof of Poincaré's recurrence theorem.

THEOREM. Let Ω be a point set of finite Lebesgue measure, and T a one-to-one measure-preserving transformation of Ω into itself.\(^1\) Let $B \subset A \subset \Omega$ be measurable sets such that, if $b \in B$, $T^n b \notin A$ for all positive integral n. Then the measure m(B) of B is 0.

PROOF. First we show that, if i < j, $(T^iB)(T^jB) = 0$. Suppose $c \in T^iB$; then from the hypothesis on B it follows that j is the smallest integer such that $T^{-i}c \in A$. Hence $c \in T^iB$. Now if $m(B) = \delta > 0$, Ω would contain infinitely many disjunct sets T^nB , each of measure δ . This contradiction proves the theorem.

The following generalization of the above theorem is trivially obvious: The result holds if we replace the hypothesis that T is measure-preserving by the following: If m(D) > 0, $\limsup_i m\{T^i(D)\} > 0$.

Received by the editors April 3, 1948.

¹ For a discussion in probability language see M. Kac, On the notion of recurrence in discrete stochastic processes, Bull. Amer. Math. Soc. vol. 53 (1947) pp. 1002–1010.

Another obvious generalization is this: Let C be the set of all points c of A such that $T^n c \in A$ for only finitely many n. Then m(C) = 0 (for $C \subset \sum_{l=0}^{\infty} T^{-l}B$).

The following is a simple derivation of Kac's theorem on the mean recurrence time.²

THEOREM. Let T above be metrically transitive. Let $a \in A - B$, and n(a) be the smallest positive integer such that $T^n a \in A$. Let m(A) > 0. Then

$$\int_{A-B} n(a)dm = m(\Omega).$$

PROOF. Define $A_k = \{n(a) = k\}$. Let i < j, i' < j', $j \ne j'$. We notice: (a) $(T^i A_j)(T^{i'} A_{j'}) = 0$. For T has a single-valued inverse and $A_j A_{j'} = 0$. If $T^i A_j$ and $T^{i'} A_{j'}$ had a point s in common, then $T^{-i} s \in A_j$, $T^{-i'} s \in A_{j'}$, in violation of the definition of j and j'.

(b)
$$\int_{A-B} n(a)dm = m \left(\sum_{h=1}^{\infty} \sum_{l=0}^{h-1} T^l A_h \right).$$

(c) Metric transitivity implies that almost every point in Ω lies in some T^lA_h , that is, $m(\sum\sum T^lA_h) = m(\Omega)$.

This proves the desired result.

COLUMBIA UNIVERSITY

² Kac, loc. cit. Theorem 2.