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We prove the following theorem. 

THEOREM 1. Let SD be any commutative principal ideal ring without 
divisors of zero, and A any matrix with elements in 35 whose character­
istic equation factors into linear factors in ©. Then there exists a uni-
modular matrix T, with elements in ©, such that T~l AT has zeros below 
the main diagonal. 

This theorem was proved by Leavitt [ l ] 1 for the special case of the 
ring § of all functions of a complex variable holomorphic in, and on 
the boundary of, a closed bounded region R. His paper contains a 
proof that this set of functions forms such a ring ; and gives an essen­
tially algebraic construction for the transforming matrix T of the 
ring. Since this construction uses only properties of § which are 
shared by all principal ideal rings [2; pp. 168-170] for [3; vol. 1, pp. 
60-67], it can be carried out in all such rings. 

The only changes necessary are those of terminology: "Holo­
morphic functions" must be replaced by "elements of 35." Two ele­
ments are called associated if they differ by a unit factor. Since the 
prime ideals of § are the ideals generated by the functions (Z — ZQ), 
ZoÇzR, one must replace i(a(z) has a zero of hth order at Zo" 
by "a = 0 mod 0PA),W and so on. Substituting a constant z0 for z 
corresponds to mapping the ring >̂ into its homomorphic image 
§/(z — Zo). Thus since 35/$ is always a field or our rings 35, the 
original arguments hold. 

The one portion of the proof which might seem difficult to gen­
eralize is the use, in the final construction of the transforming matrix, 
of the theorem on the existence of a holomorphic function whose 
expansion at a finite number of points is specified to a finite number 
of terms. But this is simply the theorem that in any ring with unique 
factorization into prime ideals, we can find an element satisfying a 
finite number of simultaneous congruences, provided that the moduli 
are powers of different prime ideals. This can be proved for all prin­
cipal ideal rings by the argument used to prove the Chinese remainder 
theorem in [4; p. 12]. 

I t is also possible to give a much simpler proof of our theorem. 
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Let S) be any principal ideal ring, A a matrix satisfying our assump­
tion. Since A can be reduced to its Jordan form / by transformation 
in the quotient field of £), we conclude as in §2 of [ l ] that there 
exists a matrix S, with elements in 35 and nonzero determinant, such 
that 

(1) AS = SJ. 

Since J is in Jordan canonical form, it has elements in 3), and zeros 
below the main diagonal. Now there always exists a unimodular 
matrix T such that TS has zeros below the main diagonal ([2; p. 
228]; it is easy to make the slight necessary modification). Then T"1 

also has elements in 35, and 

(TAT-l)(TS) = (TS)J. 

I t is easy to verify that the product XY of two matrices in normal 
form [that is, with zeros below the main diagonal] is again in normal 
form. Further if Y and XY are in normal form, and none of the di­
agonal elements of Fa re zero, then X is in normal form. Since TS and 
/ a r e already in normal form, and | TS\ 9*0, it follows that TAT~l is 
in normal form. Clearly the diagonal elements of TAT"1 are the roots 
of | TAT"1— \l\ = 0 , which is the characteristic equation of A. 

It should be pointed out that we have not yet defined a canonical 
form, since we have not described what can be done with the non-
diagonal elements, and since two matrices with the same diagonal ele­
ments can still be dissimilar. For example 

r 0 0 0] 

3 0 0 

,1 3 0. 

B = 

' 0 0 0] 

3 0 0 

- 1 3 0; 

are not similar even though their Jordan forms are identical. 
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