ASYMPTOTIC DISTRIBUTION OF THE MAXIMUM
CUMULATIVE SUM OF INDEPENDENT
RANDOM VARIABLES

KAI LAI CHUNG

The limiting distribution of the maximum cumulative sum! of a
sequence of independent random variables has been discussed recently
by Erdss-Kac? and Wald.? Erdés and Kac treated the case where each
random variables has zero mean, while Wald considered more gen-
eral cases.

We shall show that the problem can be treated by a uniform method
starting with a classical combinatorial formula due to De Moivre.t
A careful application of Stirling’s formula does the trick in all cases,
but it is interesting that quite different transformations are needed in
different cases. It is also to be noted that this is the usual method of
arriving at the normal approximation to the binomial distribution
given in elementary textbooks (frequently without rigor).

By this method we obtain easily a remainder term to the approxi-
mation. In the Bernoullian case this is the best possible order of
magnitude. In this general case we have to use a recent theorem of
H. Bergstrém® concerning the remainder term in the k-dimensional
central limit theorem. Although it was A. C. Berry and Esseen
(independently of each other) who first obtained this result in the
one-dimensional case and their methods can be extended to higher
dimensions, Bergstrém's result is more precise in the determination of
the dependence on k.

For the sake of simplicity we assume that each variable has unit
variance. It is easy to remove this restriction but it is cumbersome to
do so.

Presented to the Society, April 17, 1948; received by the editors January 28, 1948.

1 We use the term “maximum cumulative sum” for max Si; we have used the term
“maximum partial sum” for max |Skl (On the maximum partial sums of sequences of
independent random variables, Trans. Amer. Math. Soc. vol. 64 (1948) pp. 205-253).

2 P. Erdés and M. Kac, Or certain limit theorems of the theory of probability, Bull.
Amer. Math. Soc. vol. 52 (1946) pp. 292-302.

3 A. Wald, Limit distribution of the maximum and mini of successive cumulative
sums of random variables, Bull. Amer. Math. Soc. vol. 53 (1947) pp. 142-153.

4 See, for example, Uspensky, Introduction to mathematical probability, New York,
McGraw-Hill, 1937, p. 153.

5 H. Bergstrom, On the central limit theorem in the space Ry, k>1, Skandinavisk
Aktuarietidskrift vol. (1945) pp. 106-127. The result there was stated for random
variables having the same distribution, but no change is needed to carry over into the
present case. I owe to Dr. Bergstrém the present form of his result.
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We state our results as follows. Let X3, - - -, X, be a sequence of
independent random variables with
E(Xi) = pn  E(X3) =14 u,
E(| X — pe|® = v = 0(1).
Let

n
S, =2 X J,= max S
k=1 1SkSn

Then the asymptotic distributions of S, as n tends to infinity are
given below:

Case (i): ux=0, k=1, - - -, n.

_ 2 1/2 a
Pr (S, < an'/?) = (———) f e=="I2dg + O(n=1/28 log n).
0

™

Case (ii): ur=dn=12 (d#0), k=1, - - - | n.

0 adead
P <amn = [t
X

eo'd"lh=zdy 4 O(n~1/%8 log ).
a2 2w

Case (iii): pr=p>0, k=1, - - + | n.

Pr (S, < nu + anl/?) = f = 1%dx + O(n=1/28 log n).

(2m)1/2

In the Bernoullian case the remainder term in each case is to be
replaced by O(n—1/2),

1. The Bernoullian case. Let each X,, »=1,....n, be dis-
tributed as follows:
) X, = {-*— ¢ with probability p = 2-1(1 + r/g),
— g with probability ¢ = 2-1(1 — p/g),
where
(2) g =1+ u
Then

E(X,) = p, EX, — w?=1.

For definitiveness we assume that » and b are both even. From a
classical formula® we have

¢ See Uspensky, op. cit. p. 151, formula (12), p and g being interchanged.
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R R T
3 Pr (S, 2 bg) = Z:;, W(M)-

Since
lim Pr (S, 2 bg) =1
f— ©

we have
b(b + 2r — 1)!
4 Pr (S, < bg) = p* —_—— (p)".
@ ( § Pr>(§b)/2 ri(b +7)! b9
Using Stirling’s formula we have
[b(b + 2r — 1)!

ri(b + )l (PQ)TP{I

1
=Iogb+(b+2r——é->log(b+2r—-1)
) 1 1
—<r+——)logr—<b+r+——>log(b+r)

1
+1——Iog21r+rlogpq+blogp+0< n )

Assuming b=o0(r), u=0(1), we can write (5) as

] b+(b+2 1)[1 2+ 21 (bﬂl)2+o(ba>]
o8 4 2 g < 2r 8r2 738
++)1
<r —2—) ogr
1 b b
(e rg)[rert 757+ 0(5)]
2 r 73

1
(6) +1-— 5 log 27 — r(log 4 + p* + O(u%)

M 1
—blog 240 — + O(u? o ——
og 2+ [g + (n)]-{- <b+r>

b b bu b3 b
=10g-————--——-+———-m2+0( +——+m‘+bnz)-
r

2132 4y

Now let
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po= dn~1? b = anll?,

where a and d are constants, ¢ >0. Then if 2~z Sr S n¥/?, (6) gives

bb+2r— 1)1
TRy (p7p
. _ ant/? a’n d%  ad . i
@ = e R

ant/? atn  d¥r
= ————— exp <—- - — ad)-(l + O(n=1/?)).
n

2 /2302 4r
If »>n2, (6) gives
b + 2r — 1)! oy s
(8 TRy (pg)7p® = O(exp (— Ar'/%),

where 4, as later, is a positive constant which need not be the same
each time it appears. Therefore we obtain from (7) and (8)

b + 2r — 1)! L
bz ri(d+1n)! (b9
(b + 2r — 1)! . (bn1/2 )
- Y 0 A
nlzsrzg,,m f!(b + f)! (PQ) P + 7 e

+ Y exp (— Arl/3)

r>nd/2
(&)
anltl/? a*n  dY y 0112
=X o exp (-— et +a ) + O(n—1/%)
1) i ( o By ad)d +0(n-117)
= ————exp| - — — — n-1?),
a2 2129302 P 4y n 4
If d#0, letting
x = d*/n

we can write (9) as

feo adead azdz d O -
10)  J s 2o exP( 4z _x> %+ 0(n™'")

= I(a) 4+ O(n~1/%).

If d=0, letting
a*n/2r = y?
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we can write (9) as

2 1/2 a
an (—) f eV idy + 0(n1?).
L 0
2. The method of Erdés-Kac. Let X,, v=1,....n, be inde-

pendent, and
EX)) = p=dn EX,—w'=1 E(|X,-el)=m.
We also assume that
¥, = 0(1).
Let

We shall take

k= k(n) ~ n'/13,

logn \V2 (log n)i2
e=e(n)=( p ) N._.;zl_l.z.s_...

According to the method of Erdés-Kac, we have

Pr (S, < an'/?) = Pr(maxS,.,- < (a— e)n”’)
12) 1Sj<k.

+ max max Pr (| Sn,, —S.| 2 enll?).
1Si<k  m<rgnip

Let n;<7r=<mn;y;. Let B=B, be a function of # to be determined
later.
If n;y1—7rS B, then
Nip1 — 7 + (g1 — 7)%?
en
B + B2u?

en

Pr (| Sn;yy — S| = ent’?)

IIA

(13)

If Nip1—7r> B, then

1 0 —1’2
P ni41 — Or g 1/2) = —u212d
(14) r(lS i — S l entl?) (Zw)llz{f,,, +f_°° € u}
+ O((niss = 7))
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where

en'’? — (niy1 — 7)p en'!? 4+ (nipy — 1)p
v = Yy = .

)
(Hip1 — 1)1/ (Hipr — )12

If n>mn,, a fixed constant, we have

i1 — 7 S nip1 — 0 < 2n/k,

ke > 4d;
hence
n; —7)d
enll? — (niyy — )u = enll? [1 _ (mita ) ]
en
|: Zd] €
= ent/?|l 1 — — = ..__nll2’

ke 2
ent/? k% log n\!/2
“>“>unrwﬂgﬁﬂg<8 )’

© v 2 logn
(f +f )e‘“ dy = O(exp(— 16 )) = O(n™1118),

Now we choose B so that

B 1

)
en B2

B = etispls,

Then
_lf__l___B_z“z_ = O(n-114), B-12 = O(n-114).
en
Thus combining (13) and (14) we obtain
(15) Pr (| Sniyy = S¢| 2 entl?) = O(n=1119).

Hence from (12)
(16) Pr (S, < an'’?) = P’(f‘;ﬁf"! < (a - e)nllz) + O(n—1118),
3. The estimate of Bergstrom. Write
v = 2 X

7= p(mod ny),iSn;

and consider the k-dimensional vector
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(V;p)’ °c V‘(f)))

we have
%)) Z VO = (Spyy v+ + y Snp)-
Now
E|v® - v Y s4ar X E(xi-u]).
j==p(mod n1),iSng
E|vi" - = T 1

i=p(mod n1),iSng

Let F(xi, - - -, xx) be the distribution of (17) and let ¢(x1, - * * , X&)
be that of the k-dimensional normal distribution having the same
first and second order moments as F. According to the result of
Bergstrom,* we have

(p) (?)
F o] <@ C(k) maxEE(IV" EW:") 9
n{/2 » - E( I -pr) — E(pr)) !2)
C(k C(k) kb2
(1/2) AR? max v; < 4 ( )1/2 .
” 1SjSn n

The C(k) in this result can be taken to be 4%%2 log %, hence

k% lo gk <4 logn.
nl/28

(18) | F—¢|<4
Remembering that

F(x,-++,%) = Pr(max Sn; S x)
15jSk

we obtain from (16) and (18) the following inequality
(19) Pr (S, < an'®) = ¢((a — &)nl’2, - - -, (a — )n/?)
+ An12 Jlog n.
On the other hand, we have
Pr (S, < an'/?) < Pr ( max S,; < an1/2)
1sjsk
= ¢(an'’?, - - -, an'/?) 4 An~1%8 log n,

(20)
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where the last equation follows from (18).

4. The final result. As before let k~mn1/13, Let ¢i(x) denote
¢(x1, + - -, %) withay= « + - =x;,=x. Then we have obtained in (19)
and (20)

Alogn
nl/26

¢i((a — en'/?) — < Pr (S, < an'l?)

21
(21) Alogn

n1/20

=< ¢u(ant’?) +

Applying these inequalities to the Bernoullian case in §1, and con-
sidering the case d#0 for the sake of definitiveness, we obtain

e A log n < 0 1
¢i((a — en/?) — = I(a) + i
. 4 log n
= ¢u(an'’”) + alize
Consequently we have
Alog n — A log n

(22) I(a—¢ — — S Pr(S. <an''®) £I(a+¢ + .

nll26 nll28

Since it is easy to see that

(log ) 1/2)

nli26

(23) I(a) — I(a + € = O(¢) =O(
we obtain from (22) and (23)

- logn
Pr (S, < an''?) = I(a) + 0(—————)

nll/2e

5. The case ur;=u0. We have left out this case in order not to
interrupt the argument. We shall now briefly indicate the transforma-
tions needed here. Instead of making the variance one in this case
we shall follow the more usual way and assume that

x {+1 with probability 2,
"7 =1 with probability ¢
where

p—a=um
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Then

E(X)) =n,  EX,— )= 4pq.
In formula (3) we write
b = np + a(4pgn)'’?,
r=mng+s=ng+ pgn)'*

where q is a constant and ¢ varies between — (p~lgn)!/? and —a.
We find, upon using Stirling’s formula, that if ¢ =0(n/4)

B +2r -1 (_;_@_2_)1/2 (_ (ut — 2aa)2>
G tar 0=\, P 2

(+o())

(#9)79° = O(exp (— 4n'"?).

(24)

and if #4=0(t),
b(d + 2r — 1)!
ri(d + 7)!

Thus we can write, ¢ running through the values defined by (24) as
r runs through integers,

B2 p(H + 2r — 1)!
=0 ri(d + !

pu )m ( (ut — 2qa)’)
= = €ex —
rézn;/‘ + r>zn;/‘ —n‘%K—a <27rqn P 2

-(1 + O(-—t—)) 4 O(n exp (— An'/?))

nll/2

1 - 1
= ”’“—‘f =11 + 0(——).
(27‘.)1/2 a nl/2
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