
ON THE EXISTENCE OF STEADY GAS FLOW IN PLANE 
ISOTHERMAL STREAMLINE PATTERNS 

R. C. PRIM 

In this paper we shall investigate the possibility of steady, plane 
gas flows having streamlines which can be mapped conformally on­
to a family of parallel lines. We shall limit our consideration to flows 
of an ideal gas (that is, a nonviscous, thermally nonconducting gas 
with constant specific heats) in the absence of body forces. The in­
vestigation will include rotational as well as irrotational flows. 

We shall employ the formulation of the basic gas flow equations due 
to Munk and Prim [ l ] . 1 This formulation includes the most general 
steady flows of an ideal gas in the absence of body forces. 

(1) div [(1 - w2yi^-^w] = 0, 

is the continuity equation and the dynamic equation is 

7 - 1 
(la) ($-grad)ïë> H (1 — w2) grad In p = 0 

whence the integrability condition 

'w X curl w" 
(2) curl [ w X curl w~~\ 

- f3 iH = 0 ' 
where y denotes the adiabatic exponent, p the pressure, and w the re­
duced velocity vector related to the actual velocity vector v by 

w = 
^ultimate (27/(7 - mp/p) + v* 

where p denotes the density. 
Equations (1) and (2) will be referred to a plane, isothermal net 

£, rj in which the squared element of arc length is given by 

(^)2 = g(?,^[(^)2+W2] 
where limitation of the net to a plane requires 

d2 In g a2 In g 
(3) + 5. = 0. 

d^ drj* 
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1 Numbers in brackets refer to the references cited at the end of the paper. 
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The curves J == const, will be taken as streamlines. Thus specialized, 
(1) and (2) become [2] 

— [gw(l - tt*)i/Cr-D] = 0 
drj 

and 

or 

d r w2 d i 

(4) gw(l - w*)i/(r-i> = e"«> 

and 

w2 9 
(5) ; - In gw = J(Ö 

1 — w2 d£ 
where #(£) and &(£) are arbitrary functions possessing derivatives of 
fourth and third order respectively. Our problem is to find what 
functions w(%, rj) and g(£, rj) axe consistent with (3), (4) and (5). 

Elimination of gw between (4) and (5) and of g between (3) and 
(4) results in two partial differential equations restricting w: 

dw2 

(6) = rn(w2, £) 

and 

d2w2 d2w2 r/dw2\2 /dw2yi 

where 

pw2 

(2,3 + 1)W« - 2W
2 + 1 

(6a) /(w2) s 

/j(w2) = 

and 

w2(l - w2)[l - (2(3+ l)w2] 

2w2(l - w2) 

1 - (2(3 + l)w2 ' 

fi m l / ( y - 1) • 
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Use of (6) to eliminate dw2/d!- and d2w2/d£2 from (7) yields: 

(8) 
f /dw2\2~] dm dm 

= ƒ \m2 + [ J \ + ha"-m 
L \drj/J dw2 d£ 

drj2 

Evaluation of dzw2/d^drj2 from (8) and dzw2/drj2d^ from (6) leads to the 
requirement : 

m2d2m/dw22+2md2m/d£dw2+d2m/d£2-fm(2dm/d% 

/dw2\2 +mdm/dw2) ~fmz-mhfa"-ha'"+ h(dm/dw)a" 

\dri/ - d2m/dw22+fdm/dw2+fm 

Case I : ra^O. If w ^ O , (9) determines dw2/drj as a function of w2 

and £, for brevity 

dw2 

(10) — - = l(w\ Q. 

Evaluation of d2w2/d^drj from (10) and d2w2/drjd^ from (6) then leads 
to the relation 

dm dl dl 
1 - m = 0 

dw2 dw2 d% 
from which it follows that 

(11) w = w(£), 

where w{%) is arbitrary by virtue of the functions a(£) and b(£). (11) 
and (4) imply 

g = *(Ö 

and (3) then requires 

In g = e/f£ + <B. 

This restriction of g limits the streamlines to concentric circles or 
parallel straight lines. 

Case I I : w = 0. If m = 0t it is implied (6a) that &(£) =#'(£) = 0 and 
from (6) 

w = 70(77). 

Letting #(£) be an arbitrary constant, (4) implies 

g = g(v) 

and (3) then requires 
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(12) In g - On + E. 

This restricts the streamlines to a radial pencil of straight lines or 
parallel straight lines. 

The function w(rj) is not arbitrary, but is given implicitly by (12) 
and (4). By virtue of b(£) being zero, the w field is here irrotational. 

This same geometric restriction applies also to the singular, physi­
cally trivial, case when w2 = l . This is easily shown by use of ( la) . 

We have now established the theorem : 

The only isothermal streamline patterns possible in steady plane flow 
of an ideal gas without body forces consist of concentric circles, radial 
straight lines, and parallel straight lines.2. 

This theorem was established from purely local considerations and, 
hence, remains valid for the separate regions of flow fields containing 
shocks or other discontinuities. The proof given presupposes the 
existence of (piecewise) continuous third order derivatives of w. I t is 
of interest to note that the class of irrotational gas flows includes 
exactly the same flow patterns of the type considered as does the more 
general rotational class. 
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2 It has been called to the authors attention that D. Gilbarg has independently 
established this theorem for the special case of irrotational flow [3], 


