
ON THE RELIABILITY OF THE MEMBRANE THEORY 
OF SHELLS OF REVOLUTION 

C. TRUESDELL1 

1. Introduction. The reliability of the membrane theory of shells is 
a somewhat controversial subject.2 In my previous study of shells of 
revolution [MT] I have attempted to clarify the nature of the mem­
brane theory as an approximate theory of elastic shells by deducing 
its differential equations as consequences of the three-dimensional 
infinitesimal theory of elasticity and of certain further assumptions, 
by discussing the type of boundary conditions to be used in problems 
concerning closed shells, and by proving the existence and unique­
ness of solutions of the differential equations satisfying these bound­
ary conditions. I developed also apparatus for quickly and efficiently 
finding the general solutions of the differential equations of the 
membrane theory for any given specific shell of revolution. Using 
this apparatus, in the present paper I shall show that: 

1. In an open shell, or in a closed shell with a flat, sphere-like apex, 
the stress-resultants computed from the equations of the membrane 
theory will not exhibit a critical response to slight perturbations in 
the meridian curve, provided the curvature of the meridian curve is 
not changed very much. 

2. In a closed shell with a pointed apex, a very slight change in 
the meridian curve in a very small region near the apex may entail 
very large changes in the stress resultants at all points of the shell, as 
computed from the membrane theory. 

Both these results presuppose that the boundary condition at the 
apex is the "ring limit condition" stated at the end of §2. For a dis­
cussion of other possible boundary conditions, see §7. 

These results and my previous treatment of the membrane theory 
show that in open shells or in closed shells with a flat, sphere-like 
apex, the stress resultants computed from the membrane theory 

Presented to the Society, September 4, 1947; received by the editors November 3, 
1947. 

1 1 wish to thank Dr. Neményi for patient and helpful advice and discussion, and 
Mr. M. S. Raff and Miss Charlotte Brudno for the calculation of various examples. 

2 The inadequacy of the membrane theory in non-uniform problems for cones was 
noticed by Neményi, Beitrdge zur Berechnung der Schalen unter unsymmetrischer und 
unstetiger Belastungy Bygningsstatske Meddelelser (Denmark) 1936. See also the 
example in C. Truesdell, The membrane theory of shells of revolution. Trans. Amer. 
Math. Soc. vol. 58 (1945) pp. 96-1G6, see pp. 117-118. This latter paper will be de­
noted henceforth by the letters MT. 

994 



MEMBRANE THEORY OF SHELLS OF REVOLUTION 995 

with the ring limit condition at the apex may be expected to be good 
approximations to the correct stress resultants, provided the support 
of the shell is consistent with a membrane state of stress,8 but they 
cast doubt upon the reliability of the membrane theory in problems 
concerned with pointed shells. 

2. Fundamental apparatus for the subsequent discussion. Let the 
meridian curve of the shell be r=f(z)f where the 2-axis is the axis of 
revolution. Let N^ and N$ be the membrane stress resultants at a 
point in the directions of the meridian and the parallel curve respec­
tively, and let Ne<t> be the shear resultant. Let X, F, Z be the com­
ponents of load per unit area in the directions of the parallel curve, 
meridian curve, and inward normal respectively. Let subscript n's 
denote coefficients in complex Fourier series in the azimuth angle 0. 
Then, as Neményi and I have shown,4 the quantities N^, Nen, and 
Ne^n may be derived from the formulas 

(1 +ƒ'*)!/« ƒ" 

* * - i U»> * * - ( 1 + > u / , U» - & + ^1 / 2 Z»' 
(1) J K J } 

in NHn = jzÇj) + f(fZ% - Fn), 

where the stress functions VLn(z) satisfy the differential equation 

d2]! f"(z) 
(2) -TT+W-\)i-^-Un = gn{z), 

where 

ƒ(*) 

*»(*) e - ff - ^ + [O*2 - 3)ff'2 + n*f - ff']Zn 

(3) 
dY 

+ f —- + 3ff'Yn + inf (1 + f")"*X%. 
dz 

Terms in which w = 0 o r w = ± l are more conveniently treated with 
the aid of special explicit formulas [MT, pp. 128-129, 130-131] 
which avoid using the differential equation (2) ; in this investigation 
we shall limit our analysis to the terms in which \n\ ^ 2 , and our 

8 The normal stress only is prescribed at supports, it being supposed the support 
be such that the concomitant shearing stress is counterbalanced. 

4 P. Neményi and C. Truesdell, A stress function for the membrane theory of shells 
of revolution, Proc. Nat. Acad. Sci. U.S.A. vol. 29 (1943) pp. 159-162; [MT, pp. 126-
127]. 
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conclusions are therefore restricted to problems involving nonuni­
form load or support. 

Let the base of the shell be at z = 0 and the apex at z = Zo. The most 
common boundary value problems involve given loads and a given 
mode of support. Then N^O), and hence Un(0), will be a prescribed 
quantity. If the shell has an open apex, then also i\^n(so), and hence 
Un(so), will be a prescribed quantity. In the case of a shell with a 
closed apex, Flügge5 has suggested that a proper boundary condition 
may be obtained by writing the equations of equilibrium of an an­
nular section of the shell subtending a colatitude angle A<£, letting 
A0 approach zero, and then letting the annular section approach the 
apex. This boundary condition we shall call the "ring limit condi­
tion." Let the apex of the shell be representable in the form 

(4) ƒ(*) = (s - Zoyg(z), M = 1/2 or 1. 

Then the ring limit condition may be shown [MT, pp. 131-137] to 
take the form VLn(zo) = 0, and solutions satisfying this condition will 
always exist. To follow the arguments of §5 it is essential to realize 
that the boundary conditions to be imposed on the solution of (2) 
must involve both the points 2 = 0 and z = So, rather than a single point. 

3. Preliminary observations. Suppose we have two shells of revolu­
tion of nearly the same meridian curve loaded with the same load 
system and supported in the same way. From the differential equa­
tion (2) it is apparent that the difference between the two stress re­
sultant systems will depend essentially on the difference between the 
two different ratios ƒ"/ƒ. In an open shell, or in portions of a closed 
shell which are far distant from its apex, we may study the effect of 
changing curvature very much while changing the shell radius very 
slightly. With this end in mind in §4 we shall show actually that an 
arbitrarily large change in the stress resultant distribution of any 
shell can be produced by introducing a sufficiently large change in 
the curvature of the meridian curve, at the same time keeping the 
shell radius arbitrarily close to its original value. This result is pre­
sented as of interest in itself, and is not offered as evidence of unreli­
ability of the theory. Supposing, however, that both the change in 
curvature and the change in shell radius are kept small, so that the 
two meridian curves would seem hardly distinguishable, from the 
differential equation (2) we are led to expect singularities in the 
"complete" stress functions [MT, p. 128] Unc at the apex of a closed 
dome, where ƒ" /ƒ usually [MT, p. 132] becomes infinite. In §5 we 

* W. Flügge, Statik und Dynamik der Schalen, Berlin, 1934, p. 40. 
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shall show that if the two apexes are representable in the form (4) 
with exponent 1/2 (flat-topped shell), a reasonably good fit of the 
meridian curves will insure an excellent fit of the two values of 
ƒ" /ƒ at the apex, but that if the exponent is 1 (pointed shell) the 
two meridian curves may appear to fit very closely with each other 
and yet the two values of ƒ" /ƒ at the apex may be of entirely dif­
ferent orders of magnitude. We shall show also that a large differ­
ence in the two values of ƒ" /ƒ in a very small region near the apex 
necessarily produces a large difference in the two stress resultant sys­
tems throughout the shells, casting doubt on the validity of the re­
sults of the membrane theory with the ring limit condition when it is 
applied to problems concerning pointed shells supported or loaded 
nonuniformly. 

Before beginning the detailed analysis, however, let us mention 
the effect of three other types of special points in the meridian curve. 
First, a point of inflection in the meridian curve, while it produces an 
inflection in the complete stress functions Unc, does not appear either 
from the equations (1), (2), and (3) or from two special cases treated 
in detail [MT, pp. 161-163] to cause any sort of singularity or notice­
able variation in the stress-resultant system. A point where the 
tangent to the meridian curve is vertical, jf/==0, seems to be equally 
neutral in its effect on the stress-resultant system. A point of hori­
zontal tangency, where ƒ ' = oo, will in general produce infinite stress-
resultants according to the formulas (1), (2), and (3) unless ƒ = 0 at 
the same point. There appears to be no reason to doubt the validity of 
the membrane theory for shells whose meridian curves possess singu­
larities of these types. The singularity at an apex, however, requires 
special analysis. 

4. The influence of curvature differences. Preparatory to dis­
cussing the critical response of the membrane stress resultants to 
small changes in the curvature of the meridian curve, let us intro­
duce a general superposition principle in the membrane theory of 
shells of revolution. 

Suppose we have two shells whose meridian curves are r = xf(z) and 
r = 2f (z). Let us superpose these two shells and their loads and obtain 
a third shell, r = 1f(z)+2f(z)t loaded with the sum of the two original 
loadings. We shall compare the resulting membrane stress resultants 
with the sum of the two original stress resultants. We use left super­
scripts cy 1, and 2 to distinguish quantities associated with the com­
bined, first, and second shells respectively. In particular, eS{z)^1f{z) 
+2 / (s) . We define the excess stress functions 
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(5) & « «u„ - m. - nu. 
Then from (2) and a straightforward calculation it can be shown that 

(6) * n" + («2 - 1) («ƒ"/<ƒ) *„ = *.. 

where 

(7) *„ « („. _ i) ̂  _ j (__ _ __ j + cgn _ lgn _ *gw. 

The stress resultant distribution derivable from the excess stress func­
tions Hn may be pictured as resulting from a fictitious load on the 
combined shell. The fictitious load is of two types: The first part of 
formula (7) represents the geometric change alone, and is inde­
pendent of the original load systems, while the second part represents 
the different geometric resolution of the original load systems. In fact 

(8) K B - n* *f(l + °f*yi*Pn + °gn - *gn -
 2gn, 

where 

(9) Pn m - cpyi2 \lf 2f) 
n2 _ 1 y * / - lf2j" 

~~~n2 ( c /02(i + CP)112 V v 2/< 

Pn is a fictitious load distribution in the direction perpendicular to 
the axis of revolution. 

Suppose, for example, we have a shell with meridian r=*lf{z) sub­
ject to axially symmetric loading but nonuniformly supported: 
xgn = 0. Let us superpose on it a small waviness, still keeping the apex 
of the shell closed : 

(10) 

Then 

ai) 

2 / = 

'gn=0 and [MT, 

mn-
hence by formula (9), 

% n2- 1 
) 

e sin k{z — 

p. 143] 

= Kn sh (»* 

Zo), 2g» 

- l)»'»A(g 

= 0. 

- zo); 

(T+k"f)e sin k(z-z0) 

[V + ek sin k(z - z0)]2(l + t1/' + «*cos *(s - Zo)]2)1'2 

/Kn sh (w2 - l ) 1 ' 2 ^ - zo) 

« sin k(z — zo) *ƒ 
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1Un(^) and lf(z) are fixed functions, so that it is possible to choose k 
sufficiently larger than their maximum values6 so that 

n2- 1 

n2 

(13) 
k2Kn V sh (n2 - \yi2k(z - 0o) 

' [y + € sin «(s - s0)]2(l + [V + €* cos £(2 ~ *o)]2)1/2 ' 

We may now choose e sufficiently small so that ek is much smaller 
than the other magnitudes in formula (13), so that 

n2 - 1 k2Kn sh {n2 - l)l'2k(z - *0) 
(14) P n « 

Since initially we chose k as large as we pleased it follows that Pn may 
be made arbitrarily large even when e is arbitrarily small, and that 
hence the membrane stress resultants derivable from the excess stress 
function will become arbitrarily large. This result is physically obvi­
ous, but has not been proved mathematically until now, so far as I 
know. 

5. Small perturbations of the meridian curve. In §4 we set up 
apparatus by which we could discover large differences in stress re­
sultant distributions due to a generally poor approximation of one 
shell by another, but those formulas are not convenient either for 
showing the absence of large differences when the approximation is 
close or for demonstrating large differences due to poor fit in the 
neighborhood of the apex alone. We now outline a method of estimat­
ing the difference in the stress resultant systems of two shells, ap­
proximately alike and loaded and supported in the same way. 

We use the prefix A to indicate the difference between a quantity 
associated with the second shell with meridian curve r=f(z)+Af(z) 
and the corresponding quantity associated with the first one with 
meridian curve r=f(z). Suppose that the two shells are of the same 
height So, and that if the apex is closed, each has the same exponent 
JJL in the form (4). The same load distribution in the same geometric 
resolution is applied to each shell: 

(15) AX = 0, AY = 0, AZ = 0, 

and the boundary conditions are the same for each: 

(AN<t,n(zo) = 0 for an open shell, 
(16) ANUO) - 0, ] * * \ 

I. AUw(3o) = 0 f or a closed shell. 
6 That finite maxima exist for these quantities follows from [MT, pp. 98, 132]. 
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Then Atln(s) will be that solution of the differential equation 

(17) (AUW)" + (**2 - 1) [ y + A y l AU» = Ag» - (*? ~ 1)U»A J 

which assumes the values at 2 = 0 and at z~Zo given by the condi­
tions (16) and (1). We may estimate the magnitude of AUn in two 
steps. 

I. First consider solutions of the equation 

(18) (AU»)" + (**2 - 1) [ y + A y l AU» = 0. 

Since the solutions of differential equations (under suitable condi­
tions) depend continuously upon the coefficients, as A(jf"//)—*0 the 
solutions of the equation (18) must approach certain solutions of the 
equation 

(19) (AU»)" + (n> - 1 ) y AU» = 0. 

This equation is satisfied also by the complete stress functions U»c 

for the original shell, so its general solution we may write down in 
terms of functions we already know. We then attempt to estimate 
the maximum deviation of solutions of the equation (18) from these 
known functions. 

II . We consider the equation 

(20) (AU»)" + (**2 - 1) y AU» = Ag» - W - l )U»Ay • 

Since we are presumed to know the complete primitive of the equa­
tion (19), and since the right-hand side of the equation (20) involves 
only known functions, we may write down the solution of equation 
(20) as a simple quadrature [MT, p. 127]. Using the result of step I, 
we may then estimate by how much this integral may deviate from 
the corresponding exact integral of the equation (17). 

The prosecution of step II offers no difficulty whatever, but the 
result of step I is so complicated as to be useless. We shall set up the 
problem, however, because essential qualitative information may be 
gained from it. Suppose we have a function Y(z) satisfying the dif­
ferential equation 

(21) F " + ( 0 + €)F = O 

and assuming prescribed values at 2 = 0 and z = z0. By how much can 



1948] MEMBRANE THEORY OF SHELLS OF REVOLUTION 1001 

Y(z) deviate from the solution of the differential equation 

(22) y" + 4>y = 0 

which satisfies the same boundary conditions? We solve the equation 
(21) by iteration, using the solution of the equation (22) as the first 
approximating function : 

(23) Yn+1 " 0 ~ i) F(0) + V, [F(Zo) + fo°d^Z° " Ö(* + € ) F w ] 
- f '«(« - * ) ( * + «)F». 

•/ o 

The bound for | F—;y| is not simple, as it is in the familiar case illus­
trated in the text books,7 first because of our two-point boundary 
condition, and second because the functions # and e in our case are 
ƒ"/ƒ and A (ƒ"/ƒ) respectively, which are usually [MT, p. 132] 
singular at the apex of a closed dome. A bound exists, however, be­
cause it can be shown [MT, pp. 132-137] that the zero of Yn at 
Z = ZQ is strong enough to keep (zo — £)(<£+€) Yn bounded. 

Now it can be shown [MT, p. 164] that F0, and hence Fn , is of one 
sign for O^z^zo, providing ƒ " is of one sign. Then from the equa­
tion (23) we may see that even if e^O only in one small interval, the 
value of F n , and hence finally of F, will be changed at every point 
except 3 = 0 and z = Zo because of the presence of the integral from 0 
to So, and further that if e/$ is large in this interval the change in F 
will be correspondingly large. Hence even if A (ƒ"/ƒ)/(ƒ"/ƒ) *s large 
nowhere except in a small region near the apex, there will be a signifi­
cant change in Un everywhere. 

If now the apex is representable in the form (4) with /* equal 
to 1/2, and if g{z) is imbedded in a family of continuous functions 
g(z, b) of the parameter b such that g(z, 0)=g(z) and ƒ(z) +àf (z) 
= (z—Zo)l/2g(z, Ab)t then it can be shown that 

(24) ;—= j (z—Zo) A b 
f"/f _ l+4 (0 -^o )^—") + 4 ( s - * o ) 2 ( ' - > ) 

\g/b=*0 \g/b~0 
+0(A£2). 

7 L. Bieberbach, Theorie der Differentialgleichungen, 3d éd., Berlin, 1930, pp. 39-41. 
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The term linear in Ab vanishes when z — z0, so that near the apex the 
effect of the function e in equation (23) will be small, and conse­
quently | F—y\ will be small. If on the other hand the exponent in 
the form (4) is 1, and if we write h(z, b) for (z—Zo)g(z, b), we find that 

ACT//) r^ o i 
(25) - ^ i » - l o g * ' ' - - l o g * Ab + 0(Ab2), 

* /f Ldb db J&M) 
and at the apex this quantity may be infinite. Consider, for example, 

FIG. 1 

the two shells previously treated in some detail by Flügge8 and me 
[MT, pp. 155-158]: 

irz / z2 \ 
(26) ƒ s ,4 cos — , f+Af^A(l--). 

2*0 \ 2 0 / 

These two meridian curves are those members of the family 

(27) *(*, b)*=A lbk(l - M + (l - kb) cos —"I 

which correspond to the values 0 and 1/k respectively for 6. If k is 
chosen very large, Ab may be replaced by b and the term 0(Ab2) may 
be neglected in the formula (25), and we find that the value of that 
expression becomes infinite at the apex. In Figure 1 are plotted 
the two meridian curves and the exact values of \Af/f\ and 
|A(/ , , / / ) / ( /" / / ) | - From the equation (27) it is possible to show that 
d[A(h"/R)/(f"/f)]/db is infinite at the apex both when 6 = 0 and 
when & = l/fe. The value .273 approached by Af/f at the apex repre­
sents a local poorness of fit which should affect but little the correct 
stress resultants at points far distant from the apex; the two curves 

8 Op. cit. pp. 47-49. 
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are very closely matched, yet from equation (23) it is easy to see that 
the large values of \A(f"/f)/(f"/f)\ in the upper part of the two 
shells will produce large differences everywhere in the stress re­
sultants computed as solutions of the partial differential equations of 
the membrane theory. 

6. Evaluation of the membrane theory. The formulas (17) and (23) 
show that a change in the quantity ƒ " /ƒ anywhere along the meridian 
curve of a shell of revolution will affect the membrane stress resultants 
everywhere. Since at the apex of a closed shell that quantity usually 
becomes infinite, we reasonably expect large changes in it correspond­
ing to small changes in the meridian curve. Formula (14) shows that if 
the apex is sphere like the ratio A (ƒ"/ƒ)/(ƒ"/ƒ) will vanish at the 
apex to the first order in the approximation parameter Ab so that 
membrane stress resultants in shells with flat tops will not exhibit 
undue response to changes in the meridian curve. Formula (25) and 
the succeeding example show that for a pointed dome this ratio may 
become infinite, and hence that the stress resultant distribution in 
pointed shells may vary disproportionately in response to slight 
changes of the meridian curve. 

We may summarize both the preceding results and my previous 
general discussion of the membrane theory [MT, pp. 108, 123]: 

1. For an open shell or for a closed shell with a flat, sphere-like 
apex (/A = 1/2), there will exist for a given middle surface and given 
shell loading a range of thicknesses for which the stress-resultant 
distribution computed from the membrane theory will be a correct first 
approximation to that computed from the stress distribution given 
by the three-dimensional theory, providing the load distribution is 
continuous and the support conditions are consistent with boundary 
conditions admissible in the membrane theory.9 In this range slight 
local changes in the radius and in the curvature of the meridian curve 
will cause only slight changes in the stress resultants. 

2. In a closed dome with a pointed apex (ju = l ) , a slight local 
change in the meridian curve of the apex may produce a very great 
change in the membrane stress resultants throughout the shell. Hence 
the membrane theory is not reliable in treating problems of non­
uniform load and support for pointed domes. 

I t is possible to explain this unsatisfactory behavior of the mem­
brane stress resultants in pointed shells. First, the apex of any pointed 
shell of any thickness is a point where the basic assumption of shell 

9 Fliigge, op. cit. pp. 119-120, makes an equivalent statement, drawn apparently 
from experience with examples, concerning shells of circular cylindrical form. 
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theory, namely "thickness/minimum radius of normal curvature 
<3C1," is invalid. We are not interested in the apex for its own sake, 
but rather we wish to find formulas giving valid stress resultants at 
all points sufficiently far from it [MT, pp. 123-124]. Now examples 
of cylindrical shells given by Neményi10 show that the effect of other 
types of singularities, such as discontinuities in the thickness or in the 
loads, is localized and insignificant at distant points if the stress and 
moment resultants are computed from the equations of the bending 
theory. Perhaps the apex of a pointed dome represents an equally 
local source of disturbance in the bending theory, but equation (23) 
shows that this singularity affects the stress resultant distribution 
computed from the equations of the membrane theory not only 
locally but throughout the shell. 

7. Boundary conditions at the apex. As mentioned in §1, we have 
employed the ring limit condition at the apex in the foregoing discus­
sion. In the literature of shell theory it is customary to apply instead 
the more artificial requirement that the stress resultants remain finite 
at a closed apex. Flügge in proposing the ring limit condition claimed 
to prove that a membrane stress resultant system satisfying it would 
automatically remain finite,11 but his analysis contains errors, and I 
showed that in the case of pointed shells the condition of finiteness 
could never be satisfied for terms in which \n\ èz2, but that the ring 
limit condition could always be satisfied by shells with meridian of 
form (4). Infinite stress resultants at the apex are in no way objec­
tionable, since the apex is an idealization of no particular interest, 
behavior near which we are forced to consider only so as to obtain 
results valid for reasonable distances away. The present paper, how­
ever, shows that the membrane theory with the ring limit condition 
is not satisfactory for problems of pointed shells unsymmetrically 
loaded or supported. 

Now for pointed shells the annular section becomes undefined in 
the limit as the apex is approached [MT, p. 109]. Thus the ring 
limit condition is not physically natural. In re-proposing it originally 
I observed that it nevertheless led to a natural sort of boundary con­
dition for solutions of the fundamental differential equation (2), 
that solutions satisfying it existed, and that it kept the membrane 
theory statically determinate for the same range of problems con­
cerning pointed shells as for flat-topped shells. 

Nearly two years ago Professor Stoker suggested to me that finite-
10 Loc. cit. 
11 Op. cit. p. 40. 
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ness of the strain energy at the apex would be a physically more 
reasonable boundary condition, and I am in full agreement. There 
are two difficulties in the way of using this condition however. 

The first one is mainly formal. The strain energy involves strains 
as well as stress resultants, so that to compute it we must solve the 
displacement equations as well as the equilibrium equations, the 
problem thus being no longer statically determinate. There seems to 
be no particular reason why two shells having identical loads and 
supports, the one having a flat apex and the other a pointed one, 
should lead to basically different boundary problems. 

The second difficulty is much more formidable, however. To ex­
plain it, we must recall the derivation of the basic equations. In the 
customary presentation the strains are approximated by their values 
at the middle surface,12 and the strain energy is a function of these 
strains. Now in my thesis13 I showed that strains so approximated 
and employed in the usual macroscopic stress-strain relations14 can­
not satisfy the conditions of compatibility, even approximately. 
Hence I proposed a new derivation (see §8 below) of the fundamental 
differential equations [MT, pp. 102-108, 118-122], employing no 
approximate formulas for the strains and no macroscopic stress-
strain relations; this derivation presupposes the existence of appro­
priate solutions of the full equations of the three-dimensional theory, 
including the conditions of compatibility, and from the microscopic 
stress-strain relations and the usual additional assumptions of shell 
theory (as listed in §8 below) deduces relations connecting the stress 
resultants and the displacements of the middle surface. The strain 
energy does not appear, and I do not know how to find a correct ex­
pression for it. Thus it is not clear how the condition of finiteness of 
the strain energy can be applied, even when general solutions of all 
the differential equations are known. 

8. A possible theory of average stresses. A theory of shells giving 
results which are better indications of the correct three-dimensional 
stresses in problems concerned with pointed shells nonuniformly 
loaded or supported might be obtained by abandoning the stress 
resultants, which are defined, for example, 

(28) N* m f T„(l + —\dx, 
J - ô / 2 \ f 2 / 

12 Flügge, op. cit. pp. 51-52. 
13 Manuscript in Princeton Library. 
14 Flügge, op. cit. p. 50. 
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and returning to the averages originally introduced by Aron,15 for 
example, 

/

8/2 
rudx. 

-5/2 

At a sphere-like apex f^s^O, but at a pointed apex 2̂ = 0 and hence 
Nó must become infinite, even if TÓÓ has no singularity at all. TV, on 
the other hand, can never become infinite unless TOO becomes infinite 
and is thus a better guide to the behavior of the three-dimensional 
stress system. Now 

(30) 
Né à J -8 /2 

ƒ
8/2 

I Tóó\ dx 
-8/2 

8/2 
Téédx 

8/2 

so that in regions far distant from the apex Nó and Tó differ by a 
quantity of the order neglected in the membrane theory. Hence at 
points far distant from the apex the differential equations of the 
average theory may be correctly approximated by those of the 
ordinary membrane theory, but near the apex the two systems of 
partial differential equations will be quite different because the dif­
ference h/r% becomes very large. The correct theory of averages16 would 
then agree with the present membrane theory in cases when the 
latter gives correct results, but in problem of pointed domes non-
uniformly loaded or supported it might avoid the membrane theory's 
unrealistic response to insignificant changes in the meridian curve. 

I t is not obvious, however, how a correct theory of averages could 
be formulated. 

Since the equilibrium equations for the bending theory are exact 

15 H. Aron, Das Gleichgewicht und die Bewegung einer unendlich dunnen, beliebig 
gékrümmten elastischen Schale, J. Reine Angew. Math. vol. 78 (1874) pp. 136-174. 

16 Some writers, for example, Timoshenko, Theory of plates and shells, New York 
and London, 1940, p. 352, make the error of initially neglecting the difference between 
averages and resultants, fancying they thereby simplify the derivation of the ordinary 
equations of the bending theory. There results a theory formally identical with the 
bending theory, but deduced with the aid of unnecessary approximations, for I have 
shown in [MT, pp. 118-122] that the equations of equilibrium of shells, expressed in 
terms of resultants, are exact consequences of the three-dimensional equilibrium 
equations, and that the displacement equations become poorer approximations to the 
correct displacement equations when averages are used in place of resultants. See also 
the observation of Fliigge, op. cit. pp. 4-5. 
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and not approximate equations,17 the best way to derive the equi­
librium equations of the average theory would begin by expressing 
the stress and moment resultants in terms of the averages. If, for 
example, 

ƒ 5/2 

-Ô/2 

then from equations (28), (29), and (31) we have the relation 

(32) N^T*- (l/r,) P+. 

In order to obtain exact expressions like this one for all 10 stress and 
moment resultants, it is necessary to use in all 13 different averages 
like those given by the definitions (29) and (31). By substituting all 
10 of the relations of the type (32) into the equilibrium equations of 
the bending theory we obtain 5 exact equilibrium equations for the 
average theory. 

The real difficulty lies in finding correct expressions giving the stress 
averages in terms of derivatives of the displacements of the middle 
surface. For the ordinary theory of shells I have pointed out a lucid 
way [MT, pp. 120-121] to deduce these relations: (I) to express the 
displacements of an arbitrary point in terms of the displacements of 
the projection of that point on the middle surface, then (II) to sub­
stitute these formulas into the expressions giving the three-dimen­
sional strains in terms of the three-dimensional displacements, then 
(III) to substitute these values for the strains into Hooke's law and 
obtain the stresses, and finally (IV) to put the resulting values of the 
stresses into the definitions of type (28) and evaluate the integrals. 
Practical results are obtained in the bending theory by the aid of the 
characteristic assumptions of shell theory, namely18 

A. | Ô/JR| <$C1, where S is the thickness and R the minimum radius 
of normal curvature of the middle surface. 

B. \TXX/E\ <^| exx+vA/(l—v)\, where E and v denote Young's 
modulus and Poisson's ratio respectively, and A is the cubical dilata­
tion. 

17 See the preceding note. The equilibrium equations of the bending theory are 
therefore exact equilibrium equations in the strained coordinate system. To obtain a 
manageable theory we wish to be able to use these equations in the unstrained co­
ordinates, so just as in three-dimensional elasticity we add the assumptions of very 
small displacements, so that the descriptions of the deformation given in the 
strained and unstrained coordinate systems will coalesce. 

18 [MT,pp. 104-105]. See also E. Reissner, A new derivation of the equations for the 
deformation of elastic shells, Amer. J. Math. vol. 63 (1941) pp. 177-184. 
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C. | €* | « 5 / i ? , | exd\ <£Ô/R, \ exx\ «S / i ? , | dexx/d<t>\ « 1 , | dexx/dd\ « 1 . 
The assumptions A and C simplify the results of step I and hence 

of step II , the assumption B simplifies the result of step I I I , and the 
results of step IV become then a set of power series expansions in 
8/R which are valid up to and including terms of 3rd order. 

If the average theory is to be correct even when r% is arbitrarily-
small,19 assumptions A and C must be modified. If one replaces R 
by t\ in these assumptions, they will then be correct for a range of 
problems dealing with thin shells of pointed apex, but unfortunately 
they no longer effect a simplification of step I sufficient to enable us 
to carry out the succeeding steps and arrive at manageable results. 

The dominant characteristic of the ordinary membrane theory is 
that it is statically determinate: while assumptions A, B, and C are 
used in its derivation, the end result is a system of three differential 
equations involving as unknown functions only N<f>, Ne, and N^ and 
making no mention of the displacements, which can be calculated 
from a second set of three partial differential equations as soon as the 
stress resultants are known. One estimates the orders of the stress 
and moment resultants from the relations expressing the stress-
resultants in terms of the displacements of the middle surface, finding, 
for example, that N<t> = 0(o/R), If0 = O(ô3/i?3), so that a first order 
theory neglects bending moments. Since, as I have said above, it is 
not evident how to construct the two-dimensional stress-strain rela­
tions in the average theory when r2 is allowed to be arbitrarily small, 
we do not have the apparatus for deciding whether or not there is a 
simple statically determinate theory of averages which will give a 
correct first approximation to the stress averages in pointed shells. 

NAVAL ORDNANCE LABORATORY, WASHINGTON, D. C. 

19 When r2 = 0 the element of arc length in revolution coordinates [MT, p. 99] is 
no longer defined and the various differential formulas-of elasticity therefore become 
indeterminate. Naturally we do not expect our results to be valid at the apex, but we 
wish our differential equations to be valid near it, that is, when r2 is small but not 
actually zero. 


