
RINGS WITH A POLYNOMIAL IDENTITY 

IRVING KAPLANSKY 

1. Introduction. In connection with his investigation of projec­
tive planes, M. Hall [2, Theorem 6.2]* proved the following theorem: 
a division ring D in which the identity 

(1) {xy — yx)2z = z(xy — yx)2 

holds is either a field or a (generalized) quaternion algebra over its 
center F. In particular, D is finite-dimensional over F, something not 
assumed a priori. The main result (§2) in the present paper is the 
following : if D satisfies any polynomial identity it is finite-dimensional 
over F. There are connections with other problems which we note in 
§§3, 4. 

2. Proof of finite-dimensionality. Let A be an algebra (no assump­
tion of finite order) over a field F. We denote by F[xi9 • • • , xr] the 
free algebra generated by r indeterminates over F. We say that A 
satisfies a polynomial identity if there exists a nonzero element ƒ in 
F[xi, • • • , xr] such that f(ai, • • • , ar) =0 for all at- in A. 

LEMMA l.2 If A satisfies any polynomial identity, then it satisfies a 
polynomial identity in two variables. 

PROOF. Suppose A satisfies the equation f(xi, • • • , ^ r)=0. Re­
placing Xi by u*v we obtain the equation g(u, v)=0, with g a poly­
nomial which is not identically zero. 

LEMMA 2. If A satisfies any polynomial identity, it satisfies a poly­
nomial identity which is linear in each variable. 

PROOF. Suppose A satisfies ƒ (xu • • • , xr) =0 and tha t / is not linear 
in x\. Then 

f(y + Z, X2t ' • • , Xr) - f(y, X2y • • • , Xr) ~ f(zt X2, ' • • , Xr) = 0 

is satisfied by A. This is a polynomial (in r+l variables), not identi­
cally zero, and with degree in y and z lower than the degree of ƒ in x\. 
By successive steps of this kind we reach a polynomial linear in all 
variables. 
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1 Numbers in brackets refer to the bibliography at the end of the paper. 
2 Cf. [7, Satz2]. 
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LEMMA 3. Suppose that A satisfies an identity g = 0 where g is linear 
in all its variables, and let K be a field over F. Then the Kronecker 
product AXK also satisfies g = 0. 

PROOF. We have to show that g(xu • • • , xr) vanishes when the x*s 
are replaced by elements ]Ca^* °f AXK(a&At kiÇ.K). This fol­
lows from the linearity of g and the fact that the k's commute with 
everything. 

LEMMA 4.8 If A satisfies an identity ƒ=0 which is of degree not greater 
than n in each of its variablesy and if F has at least n+1 elements, then A 
satisfies an identity which is homogeneous in each of its variables. 

PROOF. We write ƒ = 2/»- where/» is of degree i in x\. Replacing 
Xi by X#i where X£JF , we find X)X*/t=0. We do this for n different 
nonzero scalars. Using the resulting Vandermonde determinant, we 
obtain ƒ< = 0. We repeat this procedure with each of the variables. 

LEMMA 5. Iff(xt y) is any nonzero element of F[x, y]t we can find two 
matrices a, b with elements in F such that f {a, b) 5^0. 

PROOF. A field of degree k over F may be represented by kXk 
matrices over F. Thus by taking matrices split into suitable smaller 
blocks, we may arrange for a scalar field of any desired (finite) size. 

Suppose that on the contrary ƒ vanishes for all matrices with ele­
ments in F. Then by Lemma 4 we may pass to a polynomial g(x, y) 
which also vanishes for any matrices over F, and which is homo­
geneous in yy say of degree t. Take a to be a diagonal matrix: 
a = diag («i, • • • , un), with n greater than the degree of/, and the 
u's as yet undefined. For b we choose an n by n matrix which per­
mutes the elements of a diagonal matrix cyclically. Thus 

(2) Vciïr* = diag («i+i, ui+2, - • - , unt ui, • * - , Ui). 

We consider g(a, b)b~~K Using the relation (2), we systematically push 
b to the right of a, and every such operation induces a cyclic permuta­
tion. Corresponding to the typical monomial x^'x^x™ • • • in g, we 
obtain the term 

(uiY(ui+ùk(uM+i)m - . . 

in the upper left corner of g(a, b)b"^K Moreover given any such term we 
can unambiguously reconstruct the monomial from which it arose (we 
use here the fact that n exceeds the degree of g, so that there is no 
overlapping of the u's). Thus the upper left entry of g(a, b)b~* is a 

3 Cf. [7, Satzl]. 
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polynomial h(ux> • • • , un) (that is to say, an ordinary commutative 
polynomial), which is not identically zero. By enlarging the field of 
scalars, if again necessary, we can find values of the u's which make 
h different from 0. For this choice we have g(a, b) 5^0, a contradiction. 

We prove the main theorem of the paper not only for division rings, 
but more generally for primitive algebras in the sense of Jacobson. 

THEOREM 1. A primitive algebra satisfying a polynomial identity is 
finite-dimensional over its center. 

PROOF. First we assert that A is a matrix algebra of finite order 
over a division algebra. For if not we would have4 that for every k9 

A has a sub-algebra homomorphic to Dh where D is a division algebra 
over Ft and Dh is the algebra of matrices of order k over D. The poly­
nomial identity satisfied by A is inherited by Dk for all k, and there­
fore holds for all matrices with coefficients in F. By Lemma 1 we 
may assume that the polynomial in question has two variables, and 
this contradicts Lemma 5. 

The problem is thus reduced to the case where A is a division alge­
bra, say with center Z. By Zorn's lemma, select a maximal subfield 
K of Ay and form the Kronecker product A XK over Z. By a theorem 
of Nakayama and Azumaya [7], A XK is a dense algebra of linear 
transformations in a vector space over K. By Lemma 2, A has a linear 
polynomial identity, and by Lemma 3 this identity survives in A XK. 
By Lemma 1 we pass to an identity in two variables in A XK. Rep­
etition of the argument of the preceding paragraph shows that A XK 
is finite-dimensional over K, hence A is fihite-dimensional over Z. 

The following further result is virtually a restatement of Lemma 5. 

THEOREM 2. The free algebra in any number of indeterminates has a 
complete set of finite-dimensional representations. 

PROOF. Let f(xi, • • • , xr) be an element in the free algebra. We 
make the replacement Xi — uty of Lemma 1. For the resulting poly­
nomial g(u9 v), we can find, by Lemma 5, matrices a and b such that 
g(a> b) 7*0. The mapping induced by sending x» into a*6 (i » 1, • • • , r) 
and all other x's into 0 is a homomorphism of the free algebra into the 
algebra generated by a and b, and in this representation ƒ (xi, • • •, xr) 
is not sent into 0. 

3. Algebraic algebras. It is true conversely that any algebra of 
finite order satisfies a polynomial identity. For algebras over the real 
numbers, this was shown by Wagner [8, pp. 531-532]; his identity 

4 [3, Th. 3]. Jacobson has since shown that a unit element is not necessary for 
this theorem (oral communication). 
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for n by n matrices has degree (n2 —n+2)(n2—#+4)/4. E. R. 
Kolchin has remarked that any algebra of order n satisfies an identity 
of degree n + 1: 

where the sign is positive or negative according as the permutation 
is even or odd. Incidentally the existence of these identities furnishes 
a brief proof of Malcev's result [6, Theorem 9] that the free algebra 
in two or more indeterminates cannot be faithfully represented by 
matrices of finite order. 

A wider class of algebras than those of finite order is covered by 
the following result.5 

THEOREM 3. An algebraic algebra of bounded degree satisfies a poly­
nomial identity. 

PROOF. TO avoid complications of notation, we give the proof for 
the case where the degrees of the elements are bounded by 3. Thus 
every element x satisfies an equation 

(3) xz + ax2 + px = 0 

where a, /3 are scalars which of course depend on x. (We do not as­
sume a unit element, and so no constant appears in (3).) We take the 
commutator with y, obtaining 

I*8, y] + a[x\ y] + P[x,y] = 0 

where [x, y] denotes xy—yx. Then we take the commutator with 
[x, y] and finally with [[x, y], [x2, y]]. The result is: 

[[[*. y] , [*. y]l [[*. yl [*. y]]] - o, 

a polynomial of degree 11. The polynomial moreover is not identically 
zero, since for example there is only one term 

xyx2yxyxzy. 

In the general case where the degree is bounded by n, we get an 
identity of degree 2n+1 — 2n~1 — 1. The case w = 2 yields an identity 
equivalent to (1), with z replaced by x. 

Combining Theorems 1 and 3, we obtain a new proof of a theorem 
due to Jacobson [3, Theorems S and 7]. 

THEOREM 4. A primitive algebraic algebra of bounded degree is finite-
dimensional over its center. 

6 1 am indebted to Prof. Jacobson for Theorem 3 and its proof. 
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An outstanding question in the theory of algebraic algebras is 
Kurosch's analogue of Burnside's problem : is an algebraic algebra 
necessarily locally finite?6 Affirmative answers have been contributed 
in two cases: (1) algebraic algebras of bounded degree [3, 4, and 5], 
and (2) representable7 algebraic algebras [6]. A third (trivial) instance 
where the answer is affirmative is the commutative case. A hypothesis 
that is weaker than any of these is the assumption of a polynomial 
identity. It thus seems natural to try Kurosch's problem next for 
algebraic algebras with a polynomial identity. We shall now con­
tribute an affirmative answer for the case of a nil algebra; in the light 
of [3, Theorem 15] the question is thus reduced to the semi-simple 
case. 

THEOREM 5. A nil algebra satisfying a polynomial identity is locally 
finite. 

PROOF. We use the terminology and results of Levitzki (cf. [5] and 
the references given there). Exactly as in [5] we reduce to the case 
where A is semi-regular. We choose an element a9*0 such that a2 = 0. 
The algebra A a is also semi-regular. We convert our identity into 
one, say f(xi, • • • , xr) = 0, which is linear in each variable (Lemma 
2). Suppose the variable Xi actually appears first in at least one of the 
monomials comprising ƒ. We gather all such terms and write 

(4) / ( * i , • • • , Xr) = X1g(x2y • • • , «r) + h(xU ' • • , «r). 

Each monomial of h has a factor X\ which appears later than the first 
term. It follows that if we substitute a for #1, and any elements of Aa 
for #2, • • • , xr, we introduce a factor a2 in each term of h and thus 
make h vanish. Thus ag(x2, • • • , xr) must also vanish for X2f * * " » •X'f 
in Aa. This makes g a right annihilator of Aa. Since Aa is semi-regular 
it has no right annihilator except 0. Hence Aa satisfies the identity 
g = 0. By induction on the degree of the identity we have that Aa is 
locally finite, which contradicts its semi-regularity. 

4. Further remarks, (a) Wagner's main theorem in [8] asserts 
that an ordered algebra over the reals satisfying a polynomial identity 
is necessarily commutative. Our results furnish a short proof of a 
special case: any ordered primitive algebra satisfying a polynomial 
identity is commutative. This is an immediate consequence of Theorem 

6 An algebra is locally finite if every finitely generated sub-algebra is of finite 
order. 

* An algebra is representable if it is isomorphic to a ring of matrices of finite order 
over some extension field. 
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1 and Albert's theorem [l] to the effect that any ordered algebra of 
finite order is a field. 

(b) The argument of Theorem 1 can be made to yield an explicit 
upper bound for the order of the algebra over its center, in terms of 
the degree and number of variables of the identity; the bound how­
ever is far too generous. In a special case like Hall's theorem there is 
no difficulty in getting the precise bound. Specifically it is only neces­
sary to produce 3 by 3 matrices violating the linearized form of (1). 
One may in this way also verify the following result: a semi-simple 
algebra satisfying a polynomial identity of degree not greater than 3 
is commutative. 

(c) We have for simplicity given all the results in this paper for 
algebras, but they may be extended to rings as follows. Assume that 
the polynomials in question have as coefficients operators a such that 
ax = 0 implies x = 0. It is to be observed that this holds in particular if 
the coefficients are ± 1 . Thus we may assert that any primitive ring 
satisfying (1) is an algebra of finite order; and Theorem 5 thus ex­
tended subsumes Levitzki's theorem [5] that a finitely generated 
nil-ring of bounded index is nilpotent. 

Added in proof (May 1, 1948). I am indebted to Dr. Harish-
Chandra for the following brief proof of Lemma 5. Let n be the de­
gree of f(x, y) and J the ideal F[x, y] generated by monomials of 
degree not less than n+1. Then F[x, y]/I is an algebra, which can 
be faithfully represented by matrices since it is of finite order. This 
gives us matrices for which ƒ 3^0. 
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