
AN EXTENSION OF ALEXANDROFFS 
MAPPING THEOREM 

C. H. DOWKER 

1. Introduction. AlexandrofFs fundamental mapping theorem 
(Überführungssatz) is a basic tool of combinatorial topology. By its 
use, many mapping theorems for rather general topological spaces can 
be shown to be consequences of the corresponding theorems for 
polytopes. It is especially useful in proving imbedding theorems and 
approximation theorems. 

The chief purpose of this paper is to determine the precise condi­
tions under which this fundamental theorem holds. It will be shown 
that the theorem holds in full generality, that is, for all coverings, if 
and only if the space is both paracompact and normal. If the space 
is normal, the theorem holds for all coverings which have locally 
finite refinements and for no others. 

2. Terminology. The mapping theorem of Alexandroff concerns 
mappings of a space into the nerve of a covering. 

By a mapping we mean a continuous transformation. By a space we 
mean a topological space, in general not satisfying any separation 
axiom. By a covering we mean a covering of the space by a finite or 
infinite collection of open sets. 

The nerve of a covering U: {Ua} is a simplicial polytope, with 
vertices ua in 1-1 correspondence with the nonempty sets Ua of the 
covering, such that ua, up, • • • , uy are vertices of a simplex of the 
nerve if and only if the corresponding sets Uat Up, • • • , Uy have a 
common point. We assume that the nerve is realized as a topological 
space in one of the following ways. The natural nerve N(U) is the 
nerve realized with the natural metric: p(x, y)s=s(y%2(xa—ya)2)112, 
where xa, y a are barycentric coordinates of x and y. The geometric 
nerve G(U) is the nerve realized with the geometric topology of 
Lefschetz [10, p. 9]:1 the stars of the vertices of repeated regular 
subdivisions form a basis for the open sets of G(U). It is known 
[12] that G(U) is a metrizable space. The natural and geometric 
topologies coincide if and only if the nerve is locally of finite dimen­
sion [ll, footnote 4]. 

Following Dieudonné, we call a covering U of a space R locally finite2 

Presented to the Society, November 2, 1946; received by the editors July 8, 1947. 
1 Numbers in brackets refer to the bibliography at the end of the paper. 
1 Locally finite «neighborhood-finite. "Locally finite " has been used by Lefschetz 

to mean star-finite. 
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if each point of R has a neighborhood meeting only a finite number of 
sets of U. A covering 93 is called a refinement of U if every set of 93 is 
contained in some set of U. A space R is called paracompact (see [4]) if 
every covering of R has a locally finite refinement. A covering of a 
space R is called point-finite if each point of R is contained in only a 
finite number of sets of the covering. Clearly, every locally finite 
covering is point-finite. 

A mapping ƒ of a space R into the nerve of a covering U is called 
canonical with respect to U if the inverse image of the star8 of each 
vertex of the nerve is contained in the corresponding set of U; in 
symbols if^iStujC. Ua. If U is point-finite, the finite collection of sets 
Ua containing a point poiR correspond to the vertices ua of a simplex 
in the nerve which we call the simplex <x(p) determined by p. I t can 
be shown [5, p. 202] that a mapping ƒ of R into the nerve of a point-
finite covering U is canonical with respect to U if and only if each 
point p of R is mapped into the closure of the simplex determined by 
p, that is, f{p)&{p). Another equivalent formulation in the case of 
point-finite coverings is given by Lefschetz [10, p. 40]. 

3. Sufficient conditions. The mapping theorem of Alexandroff, as 
modified by Kuratowski and Lefschetz, states the existence, under 
certain conditions, of canonical mappings of a space into the nerve 
of a covering. 

(a) If U is a locally finite covering of a normal space R there is a 
canonical mapping of R into the natural nerve of U. 

This form of Alexandroffs theorem is proved in [5, Theorem 1.1]. 
Alternatively, the proof by Lefschetz [10, pp. 45-46] for star-finite 
coverings can easily be extended to locally finite coverings by using 
Dieudonné's theorem [4, Theorem 6] that every point-finite cover­
ing { Ua} of a normal space can be shrunk to a covering { Va} such 
that , for each a, the closure of Va is contained in £/«. 

(b) If a covering U of a normal space R has a locally finite refinement 
there is a canonical mapping of R into the natural nerve of U. 

PROOF. Let 93 :{ VB} be a locally finite refinement of U: { £/«}. For 
each VB choose one of the sets Ua such that VBC. Ua- Each VB thus 
corresponds to a unique set Ua containing it. Let Wa be the union of 
all the sets of 93 which correspond to Z7«. Each VB is in some Wa\ hence 
SB* {Wa) is a covering of R. Since 93 is locally finite, so is SB. If 
(wa, WB, • • • i Wy) is a simplex of N(8$), there is a point 

P G WOWB • • • Wy C UaUB • • • Uy, 
8 The star of a vertex v is the union of all simplexes having f as a vertex. The star 

of a vertex is an open set in either topology. 
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and hence (w«, up, • • • , uy) is a simplex of iV(U). Thus there is a 
simplicial mapping w of iV(S3B) into N(U) which maps each vertex wa 

into the corresponding vertex #«. Clearly T is a 1-1 mapping of 
iV(SB) onto a subpolytope of iV(U). If w<* exists, w^StUa — Stw^ 
otherwise ir^StUa — O. By (a) there is a canonical mapping g oî R 
into iV(SB). Then, if ƒ=wg, ƒ is a mapping of i? into iV(U). If w* exists, 

/ - 1 St «« = r 1 ^ 1 St ua - g"1 St w« C W« C tf«. 

Otherwise, jf""1 St wa = 0C?/a. Hence ƒ is a canonical mapping of R 
into N(VL). 

(c) !ƒ U is an arbitrary covering of a paracompact normal space R, 
there is a canonical mapping of R into the natural nerve of U. 

PROOF. Since R is paracompact, U has a locally finite refinement. 
Hence, by (b), a canonical mapping exists. 

4. Necessary conditions; main theorems. We pass now to con­
sideration of some necessary conditions for the existence of canonical 
mappings. 

(d) If there exists a canonical mapping f of a space R into the 
natural nerve of a covering U, then U has a locally finite refinement. 

PROOF. The natural complex iV(U) can be shown to be a para­
compact normal (metric) space [6, Theorem 2]. Hence, the covering 
{St Ua} of N(VL) by the stars of its vertices has a locally finite re­
finement { Vp}. Then {/~x Vp} is a locally finite covering of R. Since 
Vp is contained in some St w«, f~l VpQf"1 St uaQ U*. Hence {f~l V$} 
is a refinement of U. 

(e) Let R be a space such that for every covering U of R there is a 
canonical mapping of R into the natural nerve of U. Then R is a para­
compact normal space. 

PROOF. By (d), the existence of a canonical mapping into N(U) 
implies that U has a locally finite refinement. Hence every covering U 
of R has a locally finite refinement, that is, R is paracompact. Since, 
in particular, there is a canonical mapping of R into the nerve of each 
covering by two open sets, R is normal (see [10, p. 45]). 

THEOREM 1. There exists a canonical mapping of a normal space R 
into the natural nerve of a covering U if and only if U has a locally finite 
refinement. 

PROOF. This follows immediately from (b) and (d). 

THEOREM 2. There exists a canonical mapping of a space R into the 
natural nerve of an arbitrary covering if and only if R is paracompact 
and normal. 
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PROOF. This follows immediately from (c) and (e). 

5. Dimension. Alexandroff's original theorem was partly, and in­
deed mainly, a theorem of dimension theory. The dimension-theoretic 
content of the extended (and modified) theorem is indicated by 
Theorem 3. 

The dimension of a normal space R, dim R, is defined as follows: 
dim R^n means that every finite covering of R has a finite refine­
ment of order not greater than n + 1. 

Let K be a simplicial polytope. Let <rn be an w-simplex of K, <rn 

its closure, and S*-*1 its boundary. If ƒ maps R into K, let A —f^S"-"1 

and let / | A be the mapping ƒ restricted to A. If f\A cannot be ex­
tended to a mapping of /-*«rn into Sn^1, the mapping ƒ of R into K is 
called essential in the closed simplex <rn. Thus, if ƒ is essential in crw, 
ƒ | A cannot be extended to a mapping of R O/""1^*) into 5n - 1 . It can 
be seen that a mapping ƒ of R into K is essential in cfw if and only if, 
for some subset B of R, f\ B is essential in an and f(B)(Z<rn. 

THEOREM 3. If U is a covering of a normal space R and if any canon­
ical mapping of R into N(\X) exists, then, for some canonical mapping 
ƒ of R into N(VL), the image f(R) is a subpolytope K of N(\X), dim 
if ^ dim R, and f is essential in every closed simplex of K. 

PROOF. By (d), the existence of a canonical mapping of R into 
N(U) implies that U has a locally finite refinement 93. It can be shown 
[5, Lemma 3.4] that every locally finite covering 95 of a normal space 
R has a locally finite refinement SB : {Wp} such that there is a 
mapping <£ of R onto iV(SB) with the following properties : <j> is essen­
tial in every closed simplex of iV(28) and 0-*1 St Wp = Wp for every j3. 

Since SB is a refinement of U there exists a simplicial transforma­
tion4 w of JV(SB) into JV(U) which maps Wp into ua where Ua is a set 
of U containing Wp. We may assume that TT is continuous on each 
finite subpolytope of iV(SB). Since SB is locally finite, each point p(ER 
has a neighborhood U meeting only a finite number of sets of SB, 
and hence <t>(U) is contained in a finite subpolytope of iV(SB). Then 
7T<£ maps a neighborhood of an arbitrary point p continuously. Hence 
7T0 is continuous. Le t / = 7r0. 

If 7r0(£)ESt ua, then <K£)£St wp for some Wp mapped into ua. 
Hence, pG^1 St Wp = WpCUa. Thus / - 1 St uaCUa. Therefore, ƒ is 
a canonical mapping. 

Let K be the image polytope 7riVr(SB)CiV(U). Since 4>(R) =iV(SB), 
f(R) =ir4>(R) =7riVr(SB) = K. Thus ƒ is a mapping of R onto K. 

4 See, for example [5, footnote 13]. 
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Let ÖTW be an w-simplex of K. Since 71*̂ (38) « K, there is some simplex 
a"* of i\T(S23) such that 7T(Xw=<7n. There is some w-face crj of om which is 
mapped onto <rn. (If m~n, aï — o™.) Since <j> is essential in every closed 
simplex of iV(9B), <j> is essential in cr? and hence there is a subset J5 
of i? such that 0(J3)C£? and <̂ | J5 is essential in £?. Since 7r maps <% 
homeomorphically onto orn, 7T01J5 is essential in <rn. Hence T<J> is essen­
tial in an. It follows [5, Corollary 3.6] that dim R*zn; hence each 
simplex of K has dimension not greater than dim R. Thus /=7r<£ is 
essential in each closed simplex of K and dim Kig> dim R. This com­
pletes the proof. 

6. Lefschetz' geometric nerve. It will now be shown that in any 
theorem on canonical mappings the geometric nerve can be replaced 
by the natural nerve, or the natural by the geometric. 

THEOREM 4. Let U be a covering of a space R. There exists a canonical 
mapping of R into the geometric nerve G(U) if and only if there is a 
canonical mapping of R into the natural nerve iV^U). 

PROOF. First, let ƒ be a canonical mapping of R into i\T(U). Let the 
vertices of iV(U) be {ua\ and let those of G(U) be {aa}. It is known 
[10, p. 21, (9.9)] that the barycentric mapping <j> of NQ1) onto G(U) 
which maps ua onto aa is continuous. Let g=<t>f. Then, since 0""1 St aa 

= St Ua, 
g"1 St Ga = /""V"1 St Ga - f~l St Ua C U*. 

Hence g is a canonical mapping of R into G(U). 
Conversely, let g be any canonical mapping of R into G(U). The 

natural nerve of the covering {St aa} of G(U) by the stars of its 
vertices may be identified with iV(U). It can be shown that G(U) is a 
paracompact normal (metrizable) space [6, Theorem 2]. Hence, by 
(c), there is a mapping ^ of G(U) into JV(U) canonical with respect to 
the covering {St aa}. Thus ifr1 St w«CSt a«. Let ƒ=^g. Then 

/ - 1 St Ua « g-V*"1 St « « C f 1 St Ga C D'à. 

Hence ƒ is a canonical mapping of R into iV(U). 
Applying Theorem 4 to Theorems 1 and 2, we have: 

COROLLARY 1. There exists a canonical mapping of a normal space R 
into the geometric nerve of a covering U if and only if U has a locally 
finite refinement 

COROLLARY 2. There exists a canonical mapping of a space R into the 
geometric nerve of an arbitrary covering if and only if R is paracompact 
and normal. 
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It likewise follows from Theorem 4 that the theorems of Lefschetz 
on canonical mappings into geometric nerves hold also for mappings 
into natural nerves. In particular, using his notion of "analytic" 
covering and his fundamental mapping theorem [10, p. 41], we have: 

COROLLARY 3. There exists a canonical mapping of a space R into the 
natural nerve of a point-finite covering tl if and only if U is analytic. 
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