RECURSIVE PROPERTIES OF TRANSFORMATION
GROUPS. II

W. H. GOTTSCHALK

The purpose of this note is to sharpen a previous result on the
transmission of recursive properties of a transformation group to
certain of its subgroups. [See Recursive properties of transformation
groups, by W. H. Gottschalk and G. A. Hedlund, Bull. Amer. Math.
Soc. vol. 52 (1946) pp. 637-641.]

Let T be a multiplicative topological group with identity e. A subset
R of T is said to be relatively dense provided that T'=RK for some
compact set K in T.

LemmA 1. If R is a relatively dense closed semi-group (RRCR) in
T, then R is a subgroup of T.

Proor. Suppose rER and U is a neighborhood of e. It is sufficient
to show that »*UNR#= &. Let V be a neighborhood of e for which
VV-1CU and let K be a compact set in T for which T'=RK. There
exists a finite collection F of right translates of ¥V which covers K.
Choose ko€ K. Now r~'ko =7k, for some r1ER and some k; EK. Again
3k =7rsk; for some r2ER and some k& K. This may be continued.
Thus there exist sequences ko, k1, * - - in K and 74, 75, + - - in R such
that r~k;=7;1kia =0, 1, - - - ). Select integers m and # (0Sm <n)
and an element V, of F such that km, k.EVy. Now 7 knk,™!
= (7 Vmbpy1) (Bmirkmiz) * » + (Bnoabp?) = Tmi??mis - + - r7.ER. Also
1 Vb LEr Vo Vg ' Cr-tVV-1Cr-1U. Hence r'UNR> J and the
proof is completed.

Now let T act as a transformation group on a topological space X.
That is to say, suppose that to x&€X and t& T is assigned a point,
denoted xt, of X such that: (1) xe=x (xEX); (2) (xt)s=x(s) (xEX; ¢,
sE&T); (3) The function x¢ defines a continuous transformation of
X X T into X. We assume for the remainder of the paper that x is a
fixed point of X, T is locally compact and S is a relatively dense in-
variant subgroup of T. Let £ denote the maximal subset of T for
which 2 C(xS)* where the star denotes the closure operator.

LEMMA 2. The set 2 is a closed subgroup of T which contains S.

Proor. Obviously ZDS. From xZ*C (xZ)*C(xS)* we conclude
that 2 is closed. By Lemma 1 it is now enough to show that Z is a
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semi-group. Suppose ¢, TEZ. From xe & (xS)* it follows that xor
E@xS)* rC(xST)*C(2rS)*. From xr&(xS)* it follows that x7S
CxS)*SC(xSS)*C(xS)*. Hence xarE (xS)*. Thus ¢rEZ and the
proof is completed.

LemMA 3. If W is a neighborhood of e, then x& (x[T—ZW])*.

Proor. We first show that if t&T —Z, then x & (xZVy)* for some
neighborhood V, of . Suppose t&T —Z. Since 1Y by Lemma 2,
xt~1E(xZ)* and x & (x2t)*. There are neighborhoods U of x and V
of e such that V=V"' and UVNxZt= . It follows that UNxZtV
= . Define Vy=tV.

We may assume W is open. Define N=K—ZW where K is a
compact set in T such that T=SK. Using Lemma 2 we conclude
that T=SKCS(NUZW)CSNUSZWCZINUZIW and INNIW
= . Hence T—ZW=Z2ZN. By the preceding paragraph, to each
nE N there corresponds a neighborhood V., of #such that x £ (xZ V,))*.
Since finitely many of the V, cover N, x€(xZN)*. The proof is com-
pleted.

LEMMA 4. If U is a neighborhood of x, then there exists a compact set
M in T such that xM CU and ZCSM™.

ProoF. Define N=KMNZ2 where K is a compact set in T such that
T=SK. If nEN, then xnE(xS)* and xE (xSn~1)*. Thus nEN im-
plies the existence of s,E€S such that xs,n~1&intU and hence the
existence of a compact neighborhood W, of s,»~! such that «W,CU.
Since N is compact by Lemma 2, there is a finite subset F of N for
which NCU,grW,;'s,. Define M =U,crW.. Clearly xM CU. Using
Lemma 2 we conclude that ZCSNCSM-1. The proof is completed.

Let there be distinguished in T certain sets, called admissible,
which satisfy this condition: If 4 is an admissible set and if B is a set
in T such that A CBK for some compact set K in T, then B is an
admissible set. A subgroup R of T is said to be recursive at x provided
that to each neighborhood U of x there corresponds an admissible set
A such that ACR and xACU.

LemMMA 5. If T is recursive at x, then Z is recursive at x.

Proor. Let U be a neighborhood of x. There are neighborhoods V
of x and W of e such that W=W-1, W is compact and VWCU.
By Lemma 3 we may suppose that VNx(T—ZW) = . There exists
an admissible set 4 in T such that xA CV. Clearly ACZW and
xAWCU. Define B=ZNAW. Since ACBW, B is an admissible set.
Also BCZ and xBCU. The proof is completed.
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LeMMA 6. If Z is recursive at x, then S is recursive at x.

Proor. Let U be an open neighborhood of x. By Lemma 4 there
exists a compact set M in T such that xM CU and ECSM-1. Let V
be a neighborhood of x for which VM C U. There exists an admissible
set A such that ACZ and xACV. Hence xAMCU. Define
B=SNAM. Since ACBM~-1, B is an admissible set. Also BC.S and
xBCU. The proof is completed.

The following theorem is an immediate consequence of Lemmas
S and 6.

THEOREM. If T is recursive at x, then S is recursive at x.

An interpretation of admissibility arises if we define an admissible
subset of T to be a relatively dense subset of T'. The term “recursive”
is then replaced by “almost periodic.” For other applications, see the
paper cited above.
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FIXED POINT THEOREMS FOR INTERIOR
TRANSFORMATIONS

O. H. HAMILTON

If M is a bounded continuum in a Euclidean plane E which does
not separate E and T is an interior continuous transformation of M
onto a subset of E which contains M, does T leave a point of M in-
variant? It is the purpose of this paper to answer this question in
the affirmative for certain types of locally connected continua.

Using a notation introduced by Eilenberg [2, p. 168]! a continuum
M will be said to have property (b) provided every continuous trans-
formation of M into the unit circle S in the Cartesian plane, with
center at o, is homotopic to a constant mapping, that is, a trans-
formation which transforms each point of M into a single point of S.
If T is a continuous transformation of a subset 4 of the plane E into
a subset B of E, then for each point x of 4 let 7/(x) be the point y of S
such that the directed line segment oy is parallel in direction and sense
to the directed line segment x, T'(x). Then T’ will be referred to as the
transformation of 4 into S derived from 7. Such a transformation
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