NICHOLSON’S INTEGRAL FOR J%(z)+ Yi(3)
J. ERNEST WILKINS, JR.

The integral in question is
(1) Ta(e) + Vi) = (8/x) f Ko(2z sinh £) cosh 2ntdt,
0

and its validity for arbitrary complex » when the real part of z is
positive is proved in [1, pp. 441-444]! with the help of Hardy's
theory of generalized integrals and integrations over contours in the
complex plane. It is the purpose of this paper to give a much more
elementary proof of (1).

We begin by observing [1, p. 146] that if D =3(d/dz), then three
linearly independent solutions of the equation

) [D(D? — 4n?) + 422(D + 1)]y = 0
are J2(z), Y2(2) and J.(2) Y.(z). Equation (2) may be written as
3) 229" + 329" + (1 — 4n? 4 422)y + 42y = 0.

We shall now show that y(z) =[5 Ko(22 sinh £) cosh 2ntdt is a solu-
tion of (3). When the real part of z is positive it is clear that
Ko(2z sinh ¢£) is sufficiently small at « to permit us to differentiate
under the integral sign as many times as we please. Therefore,

“) Y (2) = 2 f sinh ¢K{ (22 sinh &) cosh 2utdt.
0

If we make use of the differential equation
5) xK{’ (x) + K{ (x) — xKo(x) =0
satisfied by Ko(x), then we find that

Yy = f {4 sinh? tK((2z sinh £) — 2z~ sinh ¢K{ (22 sinh t)} cosh 2ntdt,
0

y" = [ {8 sinh® 4+ 4572 sinh K 25 sinh 1
0

— 427! sinh? tK(2z sinh #) } cosh 2nidt.
It follows that
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2%y + 33y + (1 + 420y’ + 4ay
(6) = fo ) {422 sinh 2¢ cosh ¢K{ (22 sinh )
+ 4z cosh 2tK((2z sinh #) } cosh 2#ntdt.
If now (4) is integrated by parts and use is made of (5) we find that

dn?y’ = — 4nzf sinh 2¢K,(2z sinh £) sinh 2#tdt,
0

whence another integration by parts shows that 4n2y’ is equal to the
right-hand side of (6). Therefore y(z2) is a solution of (3). Conse-
quently, there exist constants 4, B, C such that

(7) y(z) = ATa(3) + BY2(z) + CTa(@)Va(2).
We shall now show that
)] lim zy(z) = lim 2K (22 sinh £) cosh #dt = —;L;
2= 2= 0

the last equality being a consequence of the result [1, p. 388]

f " Ko(u)du = - -
0 2
In (8), z is restricted to real values. In fact, the difference of the inte-
grands in the limitands in (8) is
F(z, t) = 3K,(2z sinh £)(cosh 2nt — cosh #).
Now x'/2¢2K,(x) is bounded on (0, «), so that
| F(z, £) | < Ao(z csch #)t/2e-22sinht | cosh 2nt — cosh ¢].

Moreover, csch t<1/¢ and the mean value theorem shows that

| cosh 2nt — cosh ¢| < (2] | + 1)i(sinh 2| #| ¢t + sinh 2),
whence we see that

| F(z, ) | < A1(af)t/2% 2 sinbt(sinh 2 | #| ¢ + sinh ).

We can suppose that z2=1. Since sinh {=¢ and (2t)/2%~* is bounded,
we find that

| F(z, 1) | < As(sinh 2| n | 4 sinh )2 sinns
é Az(Sinh 2 l nl i + sinh t)e— sinh¢
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Therefore, F(z, t) converges dominatedly to zero as z approaches «,
and this suffices to prove (8).
It is known [1, p. 199] that

Ja(2) = (2/73)12 cos (z — fZ_”_ — %) + 0(z73%/%),

Va(2) = (2/72)1/? sin <z — ﬁZE - %) + 0(z31?).

From (7) we conclude that

m2y(2)

=A+(B—A)sin2(z—ﬂ—1)
2 4

+5 s (2 ")+O<—1)
2 sin 2 nw 2 %2 "),

This result is incompatible with (8) unless 4 =x2/8, B=4, C=0,
and in this case y(z)=(w%/8){Ja(2)+ Y2(2)}. This completes the
proof of (1).
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