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Introduction. The forced vibrations of a conservative system with 
one degree of freedom can be represented by the equation 

(1) Px/dt* + g(x) = j{t). 

In a mechanical system x is the displacement and / is the time. We 
call g(x) a restoring force and ƒ(/) a forcing term. Throughout this 
paper f{t) will be periodic and when we speak of a periodic solution 
of (1) we always mean a solution having the same period as ƒ(/). 

If g(x) is simply a constant multiplied by x, equation (1) represents 
a linear oscillator. In this case the amplitude of the forced oscillation 
is a constant multiple of the amplitude of the forcing function pro­
vided this latter is non-resonant. Here, a change in the amplitude of 
the forcing term merely changes the amplitude of the forced vibra­
tion. In the case of a non-linear restoring force, on the other hand, we 
usually expect [ l ] 1 that changing the amplitude of the forcing term 
will alter the essential form of the periodic solution. 

However, as we shall show, there is a class of non-linear restoring 
forces, for which forcing terms exist with the property that as the 
amplitude of the forcing function is varied, the periodic solutions re­
sulting all have the same form but vary only in amplitude. A general 
method is given for determining such a forcing function whenever it 
exists. As an example, the Duffing equations with g(x) = ±x+bxz are 
discussed, and the forcing terms mentioned are found to exist and are 
given explicitly in (16). 

Definitions. A function ƒ(/) with period 4 T is called a forcing term 
of non-critical amplitude for the system (1) if there is a solution to (1), 
x(t), having period 4T and if a factor h(k) exists so that y = hx(t) is 
a solution of 

(2) d*y/dP + g(y) = kf(f) 

for a continuous range of k which includes k = 1. In the following, we 
limit our discussion to odd restoring forces and for brevity will only 
define them for positive x} remembering always that g(—x) = ~-g(x) 
and g(0)=0 . 
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THEOREM I. The only restoring functions, g(x)> out of the class of 
functions possessing a derivative f or # > 0 , which permit forcing terms of 
non-critical amplitude have the form 

(3a) g(x) = ax + bx" 

or 

(3b) g(x) = ax + bx log x 

where a, b and a are constants. 

Assume that in (1), ƒ(2) is in fact a restoring force of non-critical 
amplitude, and that x{t) is a solution of period 47\ then h(k)x(i) will 
be a solution of (2). Substituting for ƒ(/) in (2) its value in (1) gives 

(4) d2x/dt2 + [g(hx) - kg(x)]/{h - k) = 0. 

Since x(t) is independent of k, we must have 

(5) k ( * « ) - * « ( * ) ] / ( * - *) -<?(*), 

say, independent of fe, tha t is, h(k) must be taken so that G is a func­
tion of x only. The possibility of doing this is limited by the form of 
g(x) as we shall see. Equation (5) can be rearranged to read: 

(6) G(x) - g(x) = [g(hx) - hg(x)]/(h - k). 

Now the term on the right of (6) is also a function of x alone. Since 
the denominator is a function of k alone, the numerator must be 
separable into the product of a function of x with a function of fe. 
Then the logarithmic derivative of the numerator with respect to x 
will be a function of x alone. Finally if we set x = 1 in this logarithmic 
derivative, we obtain 

hg'W - hg'{\) 
a constant, g(h) - hg(i) 

a, say. Solving this differential equation we obtain 

for a ^ l . If a = l , we find g{h) = | i ' ( l ) -g ( l ) ] f t log h+g(l)h. These 
results are of the form stated in the theorem. I t is an easy matter to 
verify for these forms that h(k) can in fact be taken so that (S) be­
comes a function of x alone. A practical condition, namely the require­
ment that the velocity dx/dt be finite, limits the range of allowable 
values of a to a> — 1. 

We shall now construct the non-critical forcing terms for the restor-
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ing forces of (3). We first choose h(k) so that (5) is independent of k. 
There is a degree of freedom in this choice for, as we have seen, the 
right side of (6) must be the product of a function of x with a function 
of k and in choosing h(k) what we do is constrain the function of k 
to be a constant. The magnitude of this constant is at our disposal. 
Call it C. Then (6) becomes 

(7) G(x) - g(x) « CGi(x), 

say, and (4) becomes 

(8) dH/dt2 + g(x) + Cd{x) = 0. 

I t is convenient to note at this point that x(t), the solution of (1) 
when ƒ(/) is a forcing term of non-critical amplitude, is also according 
to (8) the free vibration solution of a conservative system with an 
odd restoring force. This gives us considerable information regarding 
x(f) ; for example, it is completely symmetric, that is, its properties 
are entirely determined by its behavior during the quarter period in­
terval, r , between the maximum amplitude position and the zero 
amplitude position. This is a not surprising consequence of our initial 
restriction that g(x) be odd. To insure that (1) actually possesses a 
forcing term of non-critical amplitude with a certain given period 4JT, 
we must verify that (8) has a solution xo(t) with period 47\ If dx/dt = 0 
when x — A, the quarter period time, r, is given by [2] 

/

A / / pA \ 1/2 

t
dX/ \J k(&+CGi(&]di) • 

If, by suitably choosing A and C, r can be made equal to T, call 
the corresponding solution of (8) xo(t). From this the required forcing 
term of non-critical amplitude is constructed as 
(10) f{t) =d*Xo/dt* + g(x0). 

Note that this has the same symmetry as xo(t). When (10) is placed 
in (1), it is clear that xo(t) is a solution of (1). Moreover if this f(t) is 
multiplied by k, we find by virtue of (4) and (8) that hxo(t) is indeed 
a solution. We have thus proved the following: 

THEOREM I I . A sufficient condition for (1) to possess a forcing term 
of non-critical amplitude with period 4T when the restoring force has 
the form of (3) is that numbers A and C can be found which make r of 
(9) equal to T. 

For any given g(x) of the form (3) a study of (9) will reveal the 
range of periods for which forcing terms of non-critical amplitude 
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exist. For example, if g(x) — ax+bx" with a and b positive and — K a , 
a little study shows that 

0 < T < ir/2all\ 

Example. As an illustration, we find the non-critical forcing terms 
for the Duffing equations [l ] 

(11) d2x/dt2 ± x + bx* = ƒ(*), b > 0. 

Equation (8) for these cases becomes 

(12) d2x/dt2 ± x + Cxz = 0 

which can be solved by quadratures. As the integrals involved are 
elliptic, it is somewhat easier to try an elliptic function with undeter­
mined parameters. In this way it is found that 

(13) x = Acn(Kt/T, k), 

where k is the modulus and K is the real quarter period of the Jacobi 
elliptic functions, is a solution of (12) providing 

(14a) T2 = ± K2(l - 2k2), 

(14b) A2 = 2K2k2/CT2. 

Thus non-critical forcing terms for (11) exist, with periods 47\ when, 
with the upper sign 

(15a) 0 < k < 21/2/2, 0 <T <T/2 

and with the lower sign 

(15b) 21 '2/2 < * < 1, 0 < r < o o . 

The forcing terms of non-critical amplitude are found to be, from (10), 

(16) ƒ(*) = A[bA2 ± 2fc2/(2&2 - l)]cn\Kt/T, k). 

For a given T, k and K(k) are determined from (14a). The relationship 
between the amplitude of the forcing term and the amplitude of the 
solution is clearly shown in (16) and (13). 
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