
TERNARY BOOLEAN ALGEBRA 

A. A. GRAU 

1. Introduction. The present paper1 is concerned with a ternary 
operation in Boolean algebra. We assume a degree of familiarity with 
the latter [l , 2] , 2 and by the former we shall mean simply a function 
of three variables defined for elements of a set K whose values are 
also in K. Ternary operations have been discussed in groupoids [4] 
and groups [3 ] ; in Boolean algebra an operation different from the 
one introduced here was discussed by Whiteman [5]. 

By a simple set of postulates (§2), we define a ternary system, 
which we call a ternary Boolean algebra, from which Boolean algebras 
are obtained by specialization of the ternary operation, and which 
itself may be considered as a more general binary system with as 
many binary operations as elements, each having the properties of 
the Boolean operations (§4). The ternary Boolean algebra is homo­
geneous and there is a one-to-one correspondence between distinct 
ternary algebras and abstract Boolean algebras (§5, §7); thus the 
ternary algebra provides a new postulational approach to Boolean 
algebra. The ternary operation has a unique realization in Boolean 
algebra (§6). Other applications of ternary operations and the matter 
of a valid representation for ternary Boolean algebra are left to a sub­
sequent paper. 

2. Postulates for ternary Boolean algebra. Let K be a system con­
sisting of a set of elements a, 6, • • • , and two operations under which 
the system is closed, one ternary, ahc, and the other unitary a'. These 
satisfy the following relations for all a, 6, c, d, and e: 

(2.1) ab(cde) - (abc)*(abe), 

(2.2) ahb = bha - i , 

(2.3) ahb' = &'»<* = a. 

The system thus defined we shall call a ternary Boolean algebra. 
I t is easily verified that the following function in Boolean algebra 

satisfies the postulates: 
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(2.4) (anb)U (br\c)KJ ( c H a). 

The system K possesses a realization therefore and the postulates are 
consistent. By specifying zero and unit elements, 0 and 1, and then 
restricting the ternary product abc to aC^b^a^b and a U 6 = a1ft, 
Boolean algebra arises as a special case of ternary Boolean algebra 
(cf. §4). 

The principal property of K is expressed by postulate (2.1); it is 
what we shall call distributive. The other two postulates are reducibil-
ity conditions, which state that under certain conditions the ternary 
product becomes a function of only one of the three elements in­
volved. They are analogous to the identity and absorption relations 
in binary Boolean algebra. 

The propositions of Boolean algebra exhibit a duality in the opera­
tions. In the ternary algebra this is replaced by homogeneity; we do 
not have elements with special significance such as 0 and 1. The fact 
that K is homogeneous (that is, that all elements have equivalent 
properties) will be discussed in detail later. 

3. Theorems in ternary Boolean algebra. A few basic theorems that 
we require are proved here ; the proofs are for the most part analogous 
to those of the corresponding theorems in Boolean algebra. 

THEOREM 3.1. For each element b the element bf is unique. 

For if for some b there were two distinct complements b{ and bi 
we have by postulate (2.3) : 

b{ = b{*b{ = bi. 

THEOREM 3.2. The idempotent law holds, aba=*a. 

aba = (ahb')\ahV) by (2.3) 

= ab{b'bb') (2.1) 

= abb' (2.3) 

= a (2.3). 

THEOREM 3.3. The associative law, ab(cbd) = (abc)bd, holds for any de-
rived binary operation b. 

The proof requires a lemma, (abc)ba = abc: 

(abc)ha = (abc)b(ahbf) = ab{cbb') 
(3.31) 

= abc. 

Then the theorem follows by : 
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ab(cbd) = (abc)b(abd) (2.1) 

- [(abc)ba]b[(abc)bd] (2.1) 

- (abc)b[(abc)»d] (3.31) 

- [(abc)»b']b[(abc)bd] (2.3) 

= (abc)bd (2.1)(2.3). 

THEOREM 3.4. (a')' —a. 

We use the lemma ah'b — a : 

ab'b = (a»b')b'(abb) = ab(b">'b) = a. 

The theorem may be proved using (2.3): 

(a')' = (a'y°'a = a. 

THEOREM 3.5. aba' = b. 

aba' = ab(b°'a') (2.2) 

= {abbY'(aha') (2.1) 

= ba'{aba') (2.2) 

- ( K a ) 6 ( K O (2.1) 

= bb(b°'a') (2.3) (3.4) 

- b (2.2). 

THEOREM 3.6. The operation abc is commutative in any pair of ele­
ments. 

(a) abc = ab(a°a') (3.5) 

= (a»ay(aba') (2.1) 

= a°b (3.2)(3.5). 

(b) abc = ab(bcb') (3.5) 

= {abbY{abb') (2.1) 

- Jca (2.2)(2.3). 

(c) abc = cba. This follows from the propositions (a) and (b). 
We shall call a ternary operation in which each pair of elements 

may be interchanged without changing its value completely com­
mutative. If one pair of elements may be interchanged, but the others 
may not, then we have partial commutativity. 

THEOREM 3.7. For any x of K, 

abc = (o*ô)«'(J*c)*'(c*o). 
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= ab(x?x') 

«• (ahx)e(abx') 

= (a*by(a*'b) 

= [(a*by(a*x')]''[(a*by(x'*b)\ 

- [a*(b°x')]*'[(a*x')*b] 

= [(a*b)*'(a*c)]x'[(a*b)x'(c*b)i 

= (a»6)*'(J*c) "'(«"«) 

(3.5) 

(2.1) 
(3.6) 

(2.1X2.3) 

(2.1) 
(3.6X2.1) 

(3.2X3.6). 

4. Associated Boolean algebras. Let p be a fixed element of ÜT. 
Define 

(4.1) Gnb-G'b, aKJb = a*'b 

and refer to the system formed by the elements of K and the opera­
tions C\ and VJ as B(p). We may prove: 

THEOREM I. The system B(p) forms a Boolean algebra with p as its 
universe element and p' as its null element. 

The operations C\ and \J are commutative by (3.6), associative by 
(3.3), and distributive by (2.1). That p and p' are respectively the 
identities of multiplication and addition is easily verified by (2.3), 
and complementary elements satisfy the relations (3.5). Thus the sys­
tem B(p) has the properties of a Boolean algebra. 

Theorem I enables us to translate theorems of Boolean algebra into 
theorems in K. For if we have a theorem in Boolean algebra, for ex­
ample, deMorgan's theorem: 

(4.2) («H J ) ' - a'UJ', 

it must hold in B(p) since the latter is a Boolean algebra. But by 
(4.1) this becomes 

(4.3) (a*J)' * o'*'V9 

for any p of K, and so we may state the following theorem. 

THEOREM 4.3. K possesses the deMorgan property (4.3). 

It will be noted that deMorgan's theorem takes a symmetric form 
in K and expresses the fact that the unitary operation is distributive 
over the ternary operation ahc. In order to find the complement of an 
expression in K it is necessary only to put primes on the unprimed 
letters and unprime the primed ones. 
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Theorem I allows a further observation. For a fixed b, the ternary 
product ahc is a binary operation which has the properties of a 
Boolean binary operation. Since for each b there is such an operation, 
K may also be considered as a binary system in which there are as 
many Boolean operations as elements, and every pair of these opera­
tions satisfy the Boolean distributive law. 

5. Automorphisms of the ternary Boolean algebra. We stated that 
K is homogeneous in its elements, meaning that every element of K 
has the same properties as any other. This fact will now be expressed 
in a concrete form in terms of automorphisms. 

A function f(x) is an automorphism of K if f(x) is a one-to-one 
transformation of K on to itself leaving invariant the ternary opera­
tion and the operation of complementation. If the former is preserved, 
so is the latter; for if f(x) preserves the ternary operation, 

(5.i) ƒ(*) - /(*»/) - /(*y<»>ƒ(/) 

for all x and y. If x, y, and y' are distinct, so are ƒ(#), f(y), and jf(y'). 
By (2.3) and (3.1) it follows therefore that [/(y)]' =ƒ( / ) . 

The function below will be shown by a sequence of lemmas to ex­
press an automorphism of K transforming a into 6, 

(5.2) ƒ(*) = (*'•*)•'(*•*'). 

LEMMA 1. f (a) =&. 

This follows immediately by substitution. 

LEMMA 2. f(x)af(y) = (b'axay)a'(bax'ay'). 

This follows from the definition of f{x) and the distributive law. 

LEMMA 3. f(x"z) =/(x)/(ï/)/6s). 

f(&%) - [b'a(xyz)]*'[ba(x'y'z')] (5.2)(4.3) 

- [b'«{{xayy'(x«zy\y«z))y [b*{(x'*y'y'(x'«z'y'(y'a*'))] (3.7). 

By the results of §§2-3, simplification, and use of Lemma 2 we obtain 

ƒ(***) « U(xyf(y)]°'[(f(yyf(z)]«'U(zyf(x)] 

= f(xYiv)f(z) (3.7). 
LEMMA 4. ƒ[ƒ(*)] - # . 

This follows by direct substitution and simplification. 

THEOREM II. For given a and 6, there exists an automorphism of K 
transforming a into ft. 
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PROOF. By Lemma 1, the function (5.2) carries a into b, by Lemma 
3, it leaves invariant the ternary operation and hence complementa­
tion, and by Lemma 4, it has a single-valued inverse, namely, itself. 

COROLLARY. If p and q are any two elements of K% the Boolean alge­
bras B(p) and B(q) are isomorphic. 

I t is necessary only to consider the automorphism of K that trans­
forms p into q. This transforms the operations of B{p) into the corre­
sponding ones of B{q). 

6. Realizations of the ternary algebra. We have pointed out that 
the function {aC\b)\J (br\c)KJ {cC\a) in Boolean algebra satisfies the 
postulates for the ternary algebra. I t will now be shown that this is 
the only realization of the ternary product abc in an associated 
Boolean algebra B(p). For Theorem 3.7 states an identity in x\ the 
value of ahc is independent of the value of x and we may assign the 
latter at pleasure. Let x = p. Then in B(p) we must have 

(6.1) abc=> (a r\ b) U (b r\ c) \J (c r\ a). 

Hence the theorem : 

THEOREM I I I . The only realization of the ternary operation in a 
Boolean algebra is 

abc = ( a n j ) U ( i n c ) U ( c n a). 

7. Relationship of the ternary and binary algebras. We see from 
the preceding two paragraphs that there exists a one-to-one corre­
spondence between a ternary Boolean algebra and an abstract 
Boolean algebra. Nonisomorphic Boolean algebras give rise to non-
isomorphic ternary Boolean algebras and conversely. 

I t follows that Boolean algebra is fully characterized by the postu­
lates (2.1)-(2.3) and the definitions (4.1). 
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