
SOME REMARKS ON THE THEORY OF GRAPHS 
P. ERDÖS 

The present note consists of some remarks on graphs. A graph G 
is a set of points some of which are connected by edges. We assume 
here that no two points are connected by more than one edge. The 
complementary graph G' of G has the same vertices as G and two 
points are connected in G' if and only if they are not connected in G. 

A special case of a theorem of Ramsey can be stated in graph theo
retic language as follows: 

There exists a function f(k, I) of positive integers k, I with the fol
lowing property. Let there be given a graph G of n*zf(kf I) vertices. 
Then either G contains a complete graph of order fe, or G' a complete 
graph of order L (A complete graph is a graph any two vertices of 
which are connected. The order of a complete graph is the number of 
its vertices.) 

I t would be desirable to have a formula for ƒ(£, I). This a t present 
we can not do. We have however the following estimates : 

THEOREM I. Let k ^ 3 . Then 

2W<f(k,k) $ C ! W l W < 4 w . 

The second inequality of Theorem I was proved by Szekeres^thus 
we only consider the first one. Let N^2k/2. Clearly the number of 
different graphs of N vertices equals 2iNr(isr_1)/2. (We consider the ver
tices of the graph as distinguishable.) The number of different 
graphs containing a given complete graph of order k is clearly 
2*r<jr-i>/2/2*(*--i)/2- Thus the number of graphs of N^2k/2 vertices 
containing a complete graph of order k is less than 

2N(N-i)/2 jyk 2N(N~iy>/2 2JV(JNr~"1)/2 

(1) CNlk < < 
v ' ' 2fc(fc_1)/2 k\ 2fc(fc-1)/2 2 

since by a simple calculation for N^2k/2 and k è 3 

22V* < *I2*<*-1>/2. 

But it follows immediately from (1) that there exists a graph such 
tha t neither it nor its complementary graph contains a complete sub
graph of order k, which completes the proof of Theorem I. 

The following formulation of Theorem I might be of some interest: 
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Define A (n) as the greatest integer such tha t given any graph G oi n 
vertices, either it or its complementary graph contains a complete 
subgraph of order A (n). Then for A («) à 3 

log n 2 log n 
(2) _ L _ < ^ W < 5 _ . 

2 log 2 log 2 
The proof of (2) follows immediately from Theorem I. (4A(w)>w, 

The general theorem of Ramsey will now be stated. 

THEOREM (RAMSEY). Given three positive integers i, ft, /, i£*k, i^l, 
there exists a function f (i, ft, I) with the following property : If n*£ f (i, ft, I) 
and if there is given a collection of combinations of order iofn elements, 
such that every combination of order k contains at least one combination 
of order i of the collection, then there exists a combination of order I all 
of whose combinations of order i belong to the collection. 

Several proofs of this theorem have been published.1 Szekeres's 
proof gives the best known limits for f(i, ft, /) . He proves1 

(3) ƒ(*, ft, I) ^ f(i - 1, ƒ(», ft - 1, t), ƒ(», M - 1)) + 1; 

also clear ly/(I , ft, I) =fe+Z — 1; f(i, i> Ï) = / ; f(i, ft, i) = ft. By the same 
method we used in the proof of Theorem I we obtain that for suffi
ciently large ft 

(4) ƒ(*', ft, ft) > <;*"'*, 

or 

A(i, n) < Ci(log w)i/c*-i>. 

(To see this put ft=Ci(log n)1,(i~"1) in (4) and observe/(i , ft, k)>n, 
for sufficiently large C\.) Here c and C\ depend only on n and i, and 
A (i, n) is the greatest integer with the following property : Split the 
combinations of order ft of n elements into two classes Ui and U2 in 
an arbitrary way. Then there exist A (i} n) elements all whose com
binations of order ft are either in Ui or in Z72. The values given by 
(4) are very much smaller than the values given by (3). 

From (3) we obtain1 

/(ft, Ï) = /(2, ft, l) S (?*+«.*. 

Thus 

f(3, I) £ Ci+i,,. 

I t is possible tha t 
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/ (3 ,Q = 0(f). 

Our method used in the proof of Theorem I does not enable us to show 
tha t ƒ (3, /)/ /-> oo. 

Before concluding we prove the following theorem. 

THEOREM II . Let there be given (k —1)(/ —1) + 1 integers ai<a2 

< • • • . Then either there exist k of them no one dividing the other or I 
of them each a multiple of the previous one. 

Construct a matrix a\j) with the following properties: (1) no a!f 
is a multiple of any a[r) with j^r; (2) every a4

(r+1) is a multiple of 
some a\T) ; (3) all the a's occur among the a{ once and only once. If 
any row contains k or more elements we have k a'st no one dividing 
the other. If not, it clearly follows that the number of rows must be 
at least I. Now we obtain from (2) that by considering any a[l) we 
obtain a sequence of I a's, each being a multiple of the previous one, 
which completes the proof. The (k — 1 )(I — 1 ) integers p9

Uf 1^-u^k — l; 
l^v^l — 1, pu primes, show that (k — 1)(Z —1) + 1 is best possible.2 

By the same method we can prove the following theorem. 

THEOREM Ha. Let there be given a graph G of (k — l)(l — l) + l ver
tices. Then either G contains a complete graph of order k, or G' contains 
a directed path of I vertices, for every orientation of the edges of G' in 
which there are no directed closed paths. 

Recently very much more general theorems have been proved by 
Grünwald and Milgram.3 They in fact proved (among others) that 
the condition tha t G' contains no closed directed path is superfluous. 

We suppress the proof of Theorem Ha since it is essentially the 
same as that of Theorem II . (We only remark that a connected to b 
by a line directed from a to & should be replaced by a divides b.) 
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2 This proof is due to J. Brunings. 
3 Oral communication. 


